Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 10 - Simple Harmonic Motion and Elasticity - Problems - Page 278: 67

Answer

(a) $2.5\times10^{-4}$ (b) $7.5\times10^{-5}m$

Work Step by Step

(a) Here we use the equation $Strain=\frac{\Delta L}{L_{0}}=\frac{F}{YA}$ to find the strain. $Strain=\frac{F}{YA}$ $Strain=\frac{mg}{Y\pi (r_{out}^{2}-r_{in}^{2})}$ ; Let's plug known values into this equation. $Strain=\frac{(63\space kg)(9.8\space m/s^{2})}{(9.4\times10^{9}Pa)\pi[(1\times10^{-2})^{2}-(4\times10^{-3})^{2}]m^{2}}\approx2.5\times10^{-4}$ (b) We can write, $\Delta L=Strain\times L_{0}=(2.5\times10^{-4})(0.3\space m)=7.5\times10^{-5}m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.