Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 10 - Simple Harmonic Motion and Elasticity - Problems - Page 278: 65

Answer

$1.2\times10^{11}N/m^{2}$

Work Step by Step

Let's apply equation 10.17 $F=Y(\frac{\Delta L}{L_{0}})A$ to the composite rod, $F=Y_{COMP}(\frac{\Delta L_{COMP}}{L_{COMP}})A-(1)$ We know that, $\Delta L_{COMP}=\Delta L_{ALU}+\Delta L_{TUNG}=\frac{FL_{ALU}}{Y_{ALU}A}+\frac{FL_{TUNG}}{Y_{TUNG}A}-(2)$ (2)=>(1), $F=(\frac{Y_{COMP}A}{L_{COMP}})(\frac{FL_{ALU}}{Y_{ALU}A}+\frac{FL_{TUNG}}{Y_{TUNG}A})$ $1=Y_{COMP}(\frac{L_{ALU}}{L_{COMP}Y_{ALU}}+\frac{L_{TUNG}}{L_{COMP}Y_{TUNG}})-(3)$ Given that, $\frac{L_{ALU}}{L_{COMP}}=\frac{L_{TUNG}}{L_{COMP}}=\frac{1}{2}$ (3)=> $1=Y_{COMP}(\frac{1}{2Y_{ALU}}+\frac{1}{2Y_{TUNG}})=>Y_{COMP}=\frac{2Y_{ALU}Y_{TUNG}}{Y_{ALU}+Y_{TUNG}}$ Let's plug the values from table 10.1and we get, $Y_{COMP}=\frac{2(3.6\times10^{11}N/m^{2})(6.9\times10^{10}N/m^{2})}{(3.6\times10^{11}N/m^{2})+(6.9\times10^{10}N/m^{2})}=1.2\times10^{11}N/m^{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.