Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 10 - Simple Harmonic Motion and Elasticity - Problems - Page 278: 66

Answer

$(a)\space 710\space N/m^{2}$ $(b)\space 3.6\times10^{-8}$ $(c)\space 3.6\times10^{-10}m$

Work Step by Step

(a) According to equation 4.7 $f_{s}^{MAX}=\mu_{s}F_{N}$ We can get the shear force. $F=f_{s}^{MAX}=\mu_{s}F_{N}=\mu_{s}mg$ Maximum possible = $\frac{F}{A}=\frac{\mu_{s}mg}{A}=\frac{(0.91)(7.2\times10^{-2}kg)(9.8\space m/s^{2})}{(3\times10^{-2}m)^{2}}=710\space N/m^{2}$ shear stress (b) Maximum possible = $\frac{\Delta X}{L_{0}}=\frac{710\space N/m^{2}}{S}=\frac{710\space N/m^{2}}{2\times10^{10}N/m^{2}}=3.6\times10^{-8}$ shear strain (c) We can write, $\Delta X=Maximum\space possible\space shear\space strain\times L_{0}$ $\Delta X=(3.6\times10^{-8})(1\times10^{-2}m)=3.6\times10^{-10}m$ So, Maximum possible amount of shear deformation = $3.6\times10^{-10}m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.