Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 210: 86a

Answer

$v_f= 12.91m/s^2 $

Work Step by Step

$h_1= h_i = 6m$ $v_i = 7m/s$ $h_f = 0m$ $P_i + K_i =P_f + K_f $ $mgh_i + \frac{1}{2}mv_i^2 =mgh_f + \frac{1}{2}mv_f^2 $ divide the whole eqn by mass: $gh_i + \frac{1}{2}v_i^2 =gh_f + \frac{1}{2}v_f^2 $ $gh_i + \frac{1}{2}v_i^2 - gh_f= \frac{1}{2}v_f^2 $ $2(gh_i + \frac{1}{2}v_i^2 - gh_f)= v_f^2 $ $\sqrt {2(gh_i + \frac{1}{2}v_i^2 - gh_f)}= v_f $ $v_f=\sqrt {2(gh_i + \frac{1}{2}v_i^2 - gh_f)} $ $v_f=\sqrt {2(g(h_i -h_f) + \frac{1}{2}v_i^2 )} $ $v_f=\sqrt {2g(h_i -h_f) + v_i^2 )} $ $v_f=\sqrt {2\times 9.8(6 -0) + 7^2 )} $ $v_f= 12.91m/s^2 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.