Answer
$10\sin 40^{0}+16\approx 22.43J$
Work Step by Step
$E_{k}=mgh+\dfrac {kx^{2}}{2}=mg\left( d\sin \theta +x\sin \theta \right) +\dfrac {kx^{2}}{2}\Rightarrow E_{k}=1\times 10\times \left( 0.6\times \sin 40+0.4\times \sin 40\right) +\dfrac {200\times 0.4^2}{2}=10\sin 40+16=$
$10\sin 40^{0}+16\approx 22.43J$