Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 207: 58b

Answer

$ v_f =2.7m/s$

Work Step by Step

$d = 0.55m + 0.13$ $\Delta K + E_{th} = U$ $ (K_f -K_i) + E_{th} = U$ $ (\frac{1}{2}mv^2_f -\frac{1}{2}mv^2_i ) + fd = mgdsin\theta$ $ \frac{1}{2}m(v^2_f -v^2_i ) + fd = mgdsin\theta$ The initial velocity$(v_i)=0$ because the jar is moved from rest $ \frac{1}{2}m(v^2_f -0 ) + fd = mgdsin\theta$ $ \frac{1}{2}mv^2_f + fd = mgdsin\theta$ $ \frac{1}{2}mv^2_f + (μ_k F_N)d = mgdsin\theta$ $ \frac{1}{2}mv^2_f + (μ_k mgcos\theta )d = mgdsin\theta$ $ \frac{1}{2}mv^2_f = mgdsin\theta - μ_k mgdcos\theta $ $ v^2_f = 2\times \frac{mgdsin\theta - μ_k mgdcos\theta}{m} $ $ v^2_f = 2gd(sin\theta - μ_k cos\theta) $ $ v_f =\sqrt { 2gd(sin\theta - μ_k cos\theta)} $ $ v_f =\sqrt { (2)(9.8)(0.68)(sin40^{\circ}- (0.15 \times cos40^{\circ}))} $ $ v_f =2.7m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.