Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 207: 58a

Answer

$ d_f = 0.13m $

Work Step by Step

$\Delta K + \Delta E_{th} = -\Delta U$ $ (K_f -K_i) + \Delta E_{th} = - \Delta U$ $ (\frac{1}{2}mv^2_f -\frac{1}{2}mv^2_i ) + (fd_f -fd_i) = - (mgd_fsin\theta -mgd_isin\theta)$ $ \frac{1}{2}m(v^2_f -v^2_i ) + f(d_f -d_i) = - mgsin\theta(d_f-d_i)$ The comes to a stop at an unknown distance$(d_f)$ so $v_f = 0$ Since we are calculating the distance the jar will move further up the incline and not the whole length of the incline, the initial distance $(d_i)$ will be equal to zero $ \frac{1}{2}m(0 -v^2_i ) + f(d_f -0) = - mgsin\theta(d_f-0)$ $ -\frac{1}{2}mv^2_i + fd_f = - mgd_fsin\theta$ $ -\frac{1}{2}mv^2_i + (μ_k F_N)d_f = - mgd_fsin\theta$ $ -\frac{1}{2}mv^2_i + (μ_k mgcos\theta )d_f = - mgd_fsin\theta$ $ (μ_k mgcos\theta )d_f +mgd_fsin\theta = \frac{1}{2}mv^2_i $ $ mgd_f (μ_k cos\theta +sin\theta )= \frac{1}{2}mv^2_i $ $ \frac{mgd_f (μ_k cos\theta +sin\theta )}{m}= \frac{1}{2}v^2_i $ $ gd_f (μ_k cos\theta +sin\theta ))= \frac{1}{2} v^2_i $ $ d_f = \frac{v^2_i}{2g(μ_k cos\theta +sin\theta )} $ $ d_f = \frac{1.4^2_i}{(2)(9.8)(0.15\times cos40^{\circ} +sin40^{\circ} )} $ $ d_f = 0.13m $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.