Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 203: 21c

Answer

$$ v_{0}=7.45 \mathrm{m} / \mathrm{s} $$

Work Step by Step

For the cord to remain straight, then the centripetal force (at the top) must be (at least) equal to gravitational force: $$ \frac{m v_{t}^{2}}{r}=m g \Rightarrow m v_{t}^{2}=m g L $$ where we recognize that $r=L .$ We plug this into the expression for the kinetic energy (at $\left.\text { the top, where } \theta=180^{\circ}\right) .$ $$ K_{0}+U_{0}=K_{t}+U_{t} $$ $$\frac{1}{2} m v_{0}^{2}+m g L\ [{1-\cos \theta_{0}} ]=\frac{1}{2} m v_{t}^{2}+m g [ 1-\cos 180^{\circ}]$$ $$\frac{1}{2} m v_{0}^{2}+m g L \quad [{1-\cos \theta_{0}} ]=\frac{1}{2}(m g L)+m g(2 L)$$ which leads to $$ v_{0}=\sqrt{g L\left(3+2 \cos \theta_{0}\right)}=\sqrt{\left(9.80 \mathrm{m} / \mathrm{s}^{2}\right)(1.25 \mathrm{m})\left(3+2 \cos 40^{\circ}\right)}=7.45 \mathrm{m} / \mathrm{s} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.