Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 203: 18a

Answer

The potential energy is $U=m g L(1-\cos \theta)$ at the position shown in Fig. $8-34$ (which we consider to be the initial position). Thus, we have $$ K_{i}+U_{i}=K_{f}+U_{f} $$ $$ 0+m g L(1-\cos \theta)=\frac{1}{2} m v^{2}+0 $$ $$ v=\sqrt{\frac{2 m g L(1-\cos \theta)}{m}}=\sqrt{2 g L(1-\cos \theta)} $$ Plugging in $L=2.00 \mathrm{m}$ and $\theta=30.0^{\circ}$ we find $v=2.29 \mathrm{m} / \mathrm{s}$

Work Step by Step

The potential energy is $U=m g L(1-\cos \theta)$ at the position shown in Fig. $8-34$ (which we consider to be the initial position). Thus, we have $$ K_{i}+U_{i}=K_{f}+U_{f} $$ $$ 0+m g L(1-\cos \theta)=\frac{1}{2} m v^{2}+0 $$ $$ v=\sqrt{\frac{2 m g L(1-\cos \theta)}{m}}=\sqrt{2 g L(1-\cos \theta)} $$ Plugging in $L=2.00 \mathrm{m}$ and $\theta=30.0^{\circ}$ we find $v=2.29 \mathrm{m} / \mathrm{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.