Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 7 - Kinetic Energy and Work - Problems - Page 176: 85

Answer

6.63 m/s.

Work Step by Step

According to the work-energy theorem, $K_{f}=K_{i}+W$ $=\frac{1}{2}mv_{i}^{2}+\vec{F}\cdot \vec{d}$ $\vec{F}\cdot \vec{d}=F_{x}d_{x}+F_{y}d_{y}+F_{z}d_{z}$$=(-5.00\times2.00)+(5.00\times2.00)+(4.00\times7.00)=28.0\,J$ Therefore, $K_{f}=\frac{1}{2}\times2.00\,kg(4.00\,m/s)^{2}+28.0\,J=44.0\,J$ That is, $\frac{1}{2}mv_{f}^{2}=44.0\,J$ $\implies 1.0\,kg\times v_{f}^{2}=44.0\,J$ Or $v_{f}=\sqrt {44.0\,m^{2}/s^{2}}=6.63\,m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.