Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 7 - Kinetic Energy and Work - Problems - Page 176: 82

Answer

Applying Newton's second law to the $x$ (directed uphill) and $y$ (normal to the inclined plane) axes, we obtain $$ \begin{array}{c}{F-m g \sin \theta=m a} \\ {F_{N}-m g \cos \theta=0}\end{array} $$ The second equation allows us to solve for the angle the inclined plane makes with the horizontal: $$ \theta=\cos ^{-1}\left(\frac{F_{N}}{m g}\right)=\cos ^{-1}\left(\frac{13.41 \mathrm{N}}{(4.00 \mathrm{kg})\left(9.8 \mathrm{m} / \mathrm{s}^{2}\right)}\right)=70.0^{\circ} $$ From the equation for the $x$ -axis, we find the acceleration of the block to be $$ \begin{aligned} a=\frac{F}{m}-g \sin \theta=& \frac{50 \mathrm{N}}{4.00 \mathrm{kg}}-\left(9.8 \mathrm{m} / \mathrm{s}^{2}\right) \sin 70.0^{\circ}=3.29 \mathrm{m} / \mathrm{s}^{2} \\ \\ \text { Using the kinematic equation } v^{2} &=v_{0}^{2}+2 a d, \text { the speed of the block when } \\ d=3.00 \mathrm{m} \text { is } \\ v=\sqrt{2 a d} &=\sqrt{2\left(3.29 \mathrm{m} / \mathrm{s}^{2}\right)(3.00 \mathrm{m})}=4.44 \mathrm{m} / \mathrm{s} \end{aligned} $$

Work Step by Step

Applying Newton's second law to the $x$ (directed uphill) and $y$ (normal to the inclined plane) axes, we obtain $$ \begin{array}{c}{F-m g \sin \theta=m a} \\ {F_{N}-m g \cos \theta=0}\end{array} $$ The second equation allows us to solve for the angle the inclined plane makes with the horizontal: $$ \theta=\cos ^{-1}\left(\frac{F_{N}}{m g}\right)=\cos ^{-1}\left(\frac{13.41 \mathrm{N}}{(4.00 \mathrm{kg})\left(9.8 \mathrm{m} / \mathrm{s}^{2}\right)}\right)=70.0^{\circ} $$ From the equation for the $x$ -axis, we find the acceleration of the block to be $$ \begin{aligned} a=\frac{F}{m}-g \sin \theta=& \frac{50 \mathrm{N}}{4.00 \mathrm{kg}}-\left(9.8 \mathrm{m} / \mathrm{s}^{2}\right) \sin 70.0^{\circ}=3.29 \mathrm{m} / \mathrm{s}^{2} \\ \\ \text { Using the kinematic equation } v^{2} &=v_{0}^{2}+2 a d, \text { the speed of the block when } \\ d=3.00 \mathrm{m} \text { is } \\ v=\sqrt{2 a d} &=\sqrt{2\left(3.29 \mathrm{m} / \mathrm{s}^{2}\right)(3.00 \mathrm{m})}=4.44 \mathrm{m} / \mathrm{s} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.