Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 87: 51c

Answer

$\text{The time it takes for the skier to land is}$ $$t=\frac{x}{v_{x}}=\frac{d \cos \alpha}{v_{0} \cos \theta_{0}}=\frac{(7.117 \mathrm{m}) \cos \left(9.0^{\circ}\right)}{(10 \mathrm{m} / \mathrm{s}) \cos \left(11.3^{\circ}\right)}=0.72 \mathrm{s}$$ $\text{Using Eq. $4-23,$ the $x$ -and $y$ -components of the velocity at landing are}$ $$v_{x}=v_{0} \cos \theta_{0}=(10 \mathrm{m} / \mathrm{s}) \cos \left(11.3^{\circ}\right)=9.81 \mathrm{m} / \mathrm{s}$$ $$v_{y}=v_{0} \sin \theta_{0}-g t=(10 \mathrm{m} / \mathrm{s}) \sin \left(11.3^{\circ}\right)-\left(9.8 \mathrm{m} / \mathrm{s}^{2}\right)(0.72 \mathrm{s})=-5.07 \mathrm{m} / \mathrm{s}$$ $\text{Thus, the direction of travel at landing is}$ $$ \theta=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)=\tan ^{-1}\left(\frac{-5.07 \mathrm{m} / \mathrm{s}}{9.81 \mathrm{m} / \mathrm{s}}\right)=-27.3^{\circ} $$ $\text{or $27.3^{\circ}$ below the horizontal. }$ The result implies that the angle between the skier's path and the slope is $$\phi=27.3^{\circ}-9.0^{\circ}=18.3^{\circ},$$ or approximately $18^{\circ}$ to two significant figures.

Work Step by Step

$\text{The time it takes for the skier to land is}$ $$t=\frac{x}{v_{x}}=\frac{d \cos \alpha}{v_{0} \cos \theta_{0}}=\frac{(7.117 \mathrm{m}) \cos \left(9.0^{\circ}\right)}{(10 \mathrm{m} / \mathrm{s}) \cos \left(11.3^{\circ}\right)}=0.72 \mathrm{s}$$ $\text{Using Eq. $4-23,$ the $x$ -and $y$ -components of the velocity at landing are}$ $$v_{x}=v_{0} \cos \theta_{0}=(10 \mathrm{m} / \mathrm{s}) \cos \left(11.3^{\circ}\right)=9.81 \mathrm{m} / \mathrm{s}$$ $$v_{y}=v_{0} \sin \theta_{0}-g t=(10 \mathrm{m} / \mathrm{s}) \sin \left(11.3^{\circ}\right)-\left(9.8 \mathrm{m} / \mathrm{s}^{2}\right)(0.72 \mathrm{s})=-5.07 \mathrm{m} / \mathrm{s}$$ $\text{Thus, the direction of travel at landing is}$ $$ \theta=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)=\tan ^{-1}\left(\frac{-5.07 \mathrm{m} / \mathrm{s}}{9.81 \mathrm{m} / \mathrm{s}}\right)=-27.3^{\circ} $$ $\text{or $27.3^{\circ}$ below the horizontal. }$ The result implies that the angle between the skier's path and the slope is $$\phi=27.3^{\circ}-9.0^{\circ}=18.3^{\circ},$$ or approximately $18^{\circ}$ to two significant figures.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.