Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 87: 47a

Answer

$H=1,22+97,5-\dfrac {\left( 97,5\right) ^{2}}{107}\approx 9,88m$ Since the height of the fence is $H_{fence}=7,32m\lt H=9.88m$, the ball will clear the fence.

Work Step by Step

Lets calculate the height of the ball relative to the ground at given time $H_{t}=H_{0}+v_{0}t\sin \alpha -\dfrac {gt^{2}}{2}\left( 1\right) $ and since horizontal component of velocity of the ball doesn't change we can calculate the horizontal distance ball traveled at any given time by $X\left( t\right) =v_{0}t\cos \alpha \left( 2\right) $ So from (1) an (2) we get $H\left( X\right) =X\tan \alpha -\dfrac {gX^{2}}{2v^{2}_{0}\cos ^{2}\alpha } +H_{0}(3)$ İn this problem $H_{0}=1.22m$ ,$α=45^{0}$ So if we simplify 3 we will get $H\left( X\right) =1.22m+X-\dfrac {gX^{2}}{v^{2}_{0}}$ On the other hand we know the horizontal range of ball so we can calculate its initial velocity by $\dfrac {v^{2}_{0}\sin _{2}\alpha }{g}=X_{\max }=107m\Rightarrow v^{2}_{0}=\dfrac {X_{\max }g}{\sin 2\alpha }(4)$ So from (4) and (3) we get $H\left( X\right) =1,22+X-\dfrac {X^{2}}{X_{\max }}$ fence is located $97.5m $ away from the initial location of the ball horizontally ($X=97.5m ,X_{max}=107m$) so we get $H=1,22+97,5-\dfrac {\left( 97,5\right) ^{2}}{107}\approx 9,88m$ Since the Height of the fence is $H_{fence}=7,32m\lt H=9.88m$ The ball will clear the fence
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.