Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 39 - More about Matter Waves - Problems - Page 1216: 29a

Answer

There are $7$ different frequencies of light.

Work Step by Step

The quantized energies for an electron trapped in a three-dimensional infinite potential well that forms a e rectangular box are $E_{nx,ny,nz}=\frac{h^2}{8m}\Big(\frac{n_x^2}{L_x^2}+\frac{n_y^2}{L_y^2}+\frac{n_z^2}{L_z^2}\Big)$, where m is the electron mass and $n_x$ is a quantum number for well width$ L_x$, $n_y$ is a quantum number for well width $L_y$ and $n_z$ is a quantum number for well width $L_z$. In this problem, the electron is contained in a cubical box of widths $L_x=L_y=L_z=L$. $\therefore\;\;E_{nx,ny,nz}=\frac{h^2}{8mL^2}\Big(n_x^2+n_y^2+n_z^2\Big)$ The sates that correspond to the lowest five energy levels are $1.$ Ground sate: $(1,1,1)$ $2.$ First excited state with 3 fold degeneracy: $(2,1,1)$, $(1,2,1)$ and $(1,1,2)$ $3.$ Second excited state with 3 fold degeneracy: $(2,2,1)$, $(1,2,2)$ and $(2,1,2)$ $4.$ Third excited state with 3 fold degeneracy: $(3,1,1)$, $(1,3,1)$ and $(1,1,3)$ $5.$ Fourth excited state: $(2,2,2)$ Thus the lowest five energy levels are $E_{1,1,1}=3\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,1,1}=E_{1,2,1}=E_{1,1,2}=6\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2,1}=E_{1,2,2}=E_{2,1,2}=9\Big(\frac{h^2}{8mL^2}\Big)$ $E_{3,1,1}=E_{1,3,1}=E_{1,1,3}=11\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2,2}=12\Big(\frac{h^2}{8mL^2}\Big)$ Now the possible transition with the corresponding energy difference are given below: $\text{Transition}\;\;\;\;\;\;\;\;\text{Energy difference}(\Delta E)$ $E_{2,2,2}\leftrightarrow E_{1,1,1}\;\;\;\ \;\;\;\;\;\;\;\; 9\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2,2}\leftrightarrow E_{2,1,1}\;\;\;\ \;\;\;\;\;\;\;\; 6\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2,2}\leftrightarrow E_{2,2,1}\;\;\;\ \;\;\;\;\;\;\;\; 3\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2,2}\leftrightarrow E_{3,1,1}\;\;\;\ \;\;\;\;\;\;\;\; 1\Big(\frac{h^2}{8mL^2}\Big)$ $E_{3,1,1}\leftrightarrow E_{1,1,1}\;\;\;\ \;\;\;\;\;\;\;\; 8\Big(\frac{h^2}{8mL^2}\Big)$ $E_{3,1,1}\leftrightarrow E_{2,1,1}\;\;\;\ \;\;\;\;\;\;\;\; 5\Big(\frac{h^2}{8mL^2}\Big)$ $E_{3,1,1}\leftrightarrow E_{2,2,1}\;\;\;\ \;\;\;\;\;\;\;\; 2\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2,1}\leftrightarrow E_{1,1,1}\;\;\;\ \;\;\;\;\;\;\;\; 6\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2,1}\leftrightarrow E_{2,1,1}\;\;\;\ \;\;\;\;\;\;\;\; 3\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,1,1}\leftrightarrow E_{1,1,1}\;\;\;\ \;\;\;\;\;\;\;\; 3\Big(\frac{h^2}{8mL^2}\Big)$ Form the energy difference value, we can say that there are $7$ different frequencies of light.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.