Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 39 - More about Matter Waves - Problems - Page 1216: 27a

Answer

$8$ different frequencies of light

Work Step by Step

The quantized energies for an electron trapped in a two-dimensional infinite potential well that forms a rectangular corral are $E_{nx,ny}=\frac{h^2}{8m}\Big(\frac{n_x^2}{L_x^2}+\frac{n_y^2}{L_y^2}\Big),$ where $m$ is the electron mass and $n_x$ is a quantum number for well width $L_x$ and $n_y$ is a quantum number for well width $L_y$. Substituting, $L_x=L$, and $L_y=2L$, we get $E_{nx,ny}=\frac{h^2}{8mL^2}\Big(n_x^2+\frac{n_y^2}{2^2}\Big),$ The sates that corresponds to the lowest five energy levels are $(1,1),\;(1,2),\;(1,3),\;(2,1)$ and, $(2,2)\;\text{and}\;(1,4)$ degenerate states respectively. Thus the lowest five energy levels are $E_{1,1}=1.25\Big(\frac{h^2}{8mL^2}\Big)$ $E_{1,2}=2.00\Big(\frac{h^2}{8mL^2}\Big)$ $E_{1,3}=3.25\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,1}=4.25\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2}=E_{1,4}=5.00\Big(\frac{h^2}{8mL^2}\Big)$ Now the possible transition with the corresponding energy difference are given below: $\text{Transition}\;\;\;\;\;\;\;\;\text{Energy difference}(\Delta E)$ $E_{2,2}\leftrightarrow E_{1,1}\;\;\;\ \;\;\;\;\;\;\;\; 3.75\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2}\leftrightarrow E_{1,2}\;\;\;\ \;\;\;\;\;\;\;\; 3.00\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2}\leftrightarrow E_{1,3}\;\;\;\ \;\;\;\;\;\;\;\; 1.75\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,2}\leftrightarrow E_{2,1}\;\;\;\ \;\;\;\;\;\;\;\; 0.75\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,1}\leftrightarrow E_{1,1}\;\;\;\ \;\;\;\;\;\;\;\; 3.00\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,1}\leftrightarrow E_{1,2}\;\;\;\ \;\;\;\;\;\;\;\; 2.25\Big(\frac{h^2}{8mL^2}\Big)$ $E_{2,1}\leftrightarrow E_{1,3}\;\;\;\ \;\;\;\;\;\;\;\; 1.00\Big(\frac{h^2}{8mL^2}\Big)$ $E_{1,3}\leftrightarrow E_{1,1}\;\;\;\ \;\;\;\;\;\;\;\; 2.00\Big(\frac{h^2}{8mL^2}\Big)$ $E_{1,3}\leftrightarrow E_{1,2}\;\;\;\ \;\;\;\;\;\;\;\; 1.25\Big(\frac{h^2}{8mL^2}\Big)$ $E_{1,2}\leftrightarrow E_{1,1}\;\;\;\ \;\;\;\;\;\;\;\; 0.75\Big(\frac{h^2}{8mL^2}\Big)$ Form the energy difference value, we can say that there are $8$ different frequencies of light.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.