Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Foundations - Topic A - Matter - Exercises - Page 23: A.15(b)

Answer

(i) $2.25 \times 10^7 \space Pa$ (ii) $225 \space bar$

Work Step by Step

1. Identify the conversion factors: You can find these values on Table A.1, in the Resource Section. atm-pascal: $1 \space atm = 101.325 \space kPa$ pascal-bar: $10^{5} \space Pa = 1 \space bar$ kilo($k$) = $10^3$ 2. Convert 222 atm into pascal: $$222 \space atm \times \frac{101.325 \space kPa}{1 \space atm} = 2.25 \times 10^4 \space kPa$$ $$2.25 \times 10^4 (10^3) \space Pa = 2.25 \times 10^7 \space Pa$$ 3. Calculate the same value in bar: $$2.25 \times 10^7 \space Pa \times \frac{1 \space bar}{10^5 \space Pa} = 225 \space bar$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.