Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 2 - Exercises - Page 82: 120

Answer

The answer is below.

Work Step by Step

Calculate the number of naturally existing molecules of \[\text{C}{{\text{l}}_{2}}\text{O}\] having different masses with the two isotopes of chlorine and three isotopes of oxygen as follows: (1) \[{}^{35}\text{Cl}{}^{35}\text{Cl}{}^{16}\text{O}\] (2) \[{}^{35}\text{Cl}{}^{35}\text{Cl}{}^{17}\text{O}\] (3) \[{}^{35}\text{Cl}{}^{35}\text{Cl}{}^{18}\text{O}\] (4) \[{}^{35}\text{Cl}{}^{37}\text{Cl}{}^{16}\text{O}\] (5) \[{}^{35}\text{Cl}{}^{37}\text{Cl}{}^{17}\text{O}\] (6) \[{}^{35}\text{Cl}{}^{37}\text{Cl}{}^{18}\text{O}\] (7) \[{}^{37}\text{Cl}{}^{37}\text{Cl}{}^{16}\text{O}\] (8) \[{}^{37}\text{Cl}{}^{37}\text{Cl}{}^{17}\text{O}\] (9) \[{}^{37}\text{Cl}{}^{37}\text{Cl}{}^{18}\text{O}\] So, there are nine molecules of \[\text{C}{{\text{l}}_{2}}\text{O}\] having different masses. The most abundant molecules are those which are composed of isotopes with higher abundance. Natural abundance of \[\left( \text{O-17} \right)\] is the highest among the three isotopes of oxygen and the natural abundance of \[\left( \text{Cl-35} \right)\] is higher than that of \[\left( \text{Cl-37} \right)\] for chlorine. Therefore, \[{}^{35}\text{Cl}{}^{35}\text{Cl}{}^{16}\text{O};\,{}^{35}\text{Cl}{}^{37}\text{Cl}{}^{16}\text{O};\,{}^{37}\text{Cl}{}^{37}\text{Cl}{}^{16}\text{O}\] are the most abundant molecules. Calculate the mass of \[{}^{35}\text{Cl}{}^{35}\text{Cl}{}^{16}\text{O}\] as follows: \[\begin{align} & m\text{(}{}^{35}\text{Cl}{}^{35}\text{Cl}{}^{16}\text{O) = }m\text{(Cl-35)}+m\text{(Cl-35)}+m\text{(}O-16\text{)} \\ & \text{= 2 }\!\!\times\!\!\text{ }\left( \text{34}\text{.9688 amu} \right)\text{+15}\text{.9949 amu} \\ & \text{ =85}\text{.9325 amu} \end{align}\] Calculate the mass of \[{}^{35}\text{Cl}{}^{37}\text{Cl}{}^{16}\text{O}\] as follows: \[\begin{align} & m\text{(}{}^{35}\text{Cl}{}^{37}\text{Cl}{}^{16}\text{O) = }m\text{(Cl-35)}+m\text{(Cl-37)}+m\text{(}O-16\text{)} \\ & \text{=34}\text{.9688 amu+36}\text{.9659 amu+15}\text{.9949 amu} \\ & \text{ =87}\text{.9296 amu} \end{align}\] Calculate the mass of \[{}^{37}\text{Cl}{}^{37}\text{Cl}{}^{16}\text{O}\] as follows: \[\begin{align} & m\text{(}{}^{37}\text{Cl}{}^{37}\text{Cl}{}^{16}\text{O) = }m\text{(Cl-37)}+m\text{(Cl-37)}+m\text{(}O-16\text{)} \\ & \text{= 2 }\!\!\times\!\!\text{ }\left( \text{36}\text{.9659 amu} \right)\text{+15}\text{.9949 amu} \\ & \text{ =89}\text{.9267 amu} \end{align}\] The number of naturally existing molecules of \[\text{C}{{\text{l}}_{2}}\text{O}\] having different masses is\[\underline{9}\], and the masses of three molecules which are the most abundant are: \[\underline{m\text{(}{}^{35}\text{Cl}{}^{35}\text{Cl}{}^{16}\text{O)= 85}\text{.9325 amu};\,m\text{(}{}^{35}\text{Cl}{}^{37}\text{Cl}{}^{16}\text{O) =87}\text{.9296 amu};\,m\text{(}{}^{37}\text{Cl}{}^{37}\text{Cl}{}^{16}\text{O) =89}\text{.9267 amu}}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.