Answer
\[\text{Li-6}\,=\underline{7.494\,\text{percent}}\] and \[\text{Li-7}=\underline{92.506\,\text{percent}}\]
Work Step by Step
Calculate the fraction of lithium-6 as follows:
\[\text{Fraction of isotope lithium-}6=\frac{\text{Relative abundance of lithium-}6}{\text{100}}\]
Calculate the fraction of lithium-7 as follows:
\[\text{Fraction of isotope lithium-}7=\frac{\text{Relative abundance of lithium-}7}{\text{100}}\]
Atomic mass is the average of the mass of isotopes. So, the atomic mass of lithium is \[6.941\text{ amu}\].
Calculate the relative abundance as follows:
\[\begin{align}
& \text{Atomic mass}=\left( \text{Fraction of lithium-}6\times \text{Mass of lithium-}6 \right)+ \\
& \left( \text{Fraction of lithium-}7\times \text{Mass of lithium-}7 \right) \\
& 6.941\text{ amu}=\left( \frac{\text{Relative abundance of lithium-}6}{\text{100}}\times \text{6}\text{.01512 amu} \right) \\
& +\left( \frac{\text{Relative abundance of lithium-}7}{\text{100}}\times 7.01601\text{ amu} \right)
\end{align}\]
Substitute relative abundance of lithium-7 as \[100-\text{relative abundance of lithium-}6\] in the above expression as follows:
\[\begin{align}
& 6.941\text{ amu}=\left( \frac{\text{Relative abundance of lithium-}6}{\text{100}}\times \text{6}\text{.01512 amu} \right) \\
& +\left( \frac{\text{100}-\text{Relative abundance of lithium-}6}{\text{100}}\times 7.01601\text{ amu} \right) \\
& \text{Relative abundance of lithium-}6=7.494\,\text{percent}
\end{align}\]
Calculate the relative abundance of lithium-7 as follows:
\[\begin{align}
& \text{Relative abundance of lithium-}7=100\,\text{percent}-7.494\,\text{percent} \\
& =92.506\,\text{percent}
\end{align}\]
The relative abundance of lithium-6 is \[\underline{7.494\,\text{percent}}\] and the relative abundance of lithium-7 is \[\underline{92.506\,\text{percent}}\].