Answer
\[\underline{20\,\text{percent}}\] and \[80\,\text{percent}\]
Work Step by Step
Calculate the fraction of boron-10 as follows:
\[\text{Fraction of isotope boron-}10=\frac{\text{Relative abundance of boron-}10}{\text{100}}\]
Calculate the fraction of boron-11 as follows:
\[\text{Fraction of isotope boron-}11=\frac{\text{Relative abundance of boron-}11}{\text{100}}\]
Atomic mass is the average of the mass of isotopes. So, the atomic mass of boron is \[10.81\text{ amu}\].
Calculate the relative abundance as follows:
\[\begin{align}
& \text{Atomic mass}=\left( \text{Fraction of boron-}10\times \text{Mass of boron-}10 \right)+ \\
& \left( \text{Fraction of boron-}11\times \text{Mass of boron-}11 \right) \\
& 10.81=\left( \frac{\text{Relative abundance of boron-}10}{\text{100}}\times 10.01294\text{ amu} \right) \\
& +\left( \frac{\text{Relative abundance of boron-}11}{\text{100}}\times 11.00931\text{ amu} \right)
\end{align}\]
Substitute relative abundance of boron-11 as \[100-\text{relative abundance of boron-}10\] in the above expression as follows:
\[\begin{align}
& 10.81=\left( \frac{\text{Relative abundance of boron-}10}{\text{100}}\times 10.01294\text{ amu} \right)+ \\
& \left( \frac{\text{100}-\text{Relative abundance of boron-}10}{\text{100}}\times 11.00931\text{ amu} \right)
\end{align}\]
\[\text{Relative abundance of boron}-10=20\,\text{percent}\]
Calculate the relative abundance of boron-11 as follows:
\[\begin{align}
& \text{Relative abundance of boron-}11=100\,\text{percent}-\underline{20\,\text{percent}} \\
& =80\,\underline{\text{percent}}
\end{align}\]
The relative abundance of boron-10 is \[\underline{20\,\text{percent}}\] and relative abundance of boron-11 is \[80\,\text{percent}\].