Chemistry: Atoms First (2nd Edition)

Published by Cengage Learning
ISBN 10: 1305079248
ISBN 13: 978-1-30507-924-3

Chapter 5 - Exercises - Page 240d: 67

Answer

a. $$4.01 \times 10^{22} \space atoms \space N $$ b. $$ 5.97 \times 10^{22} \space atoms \space N $$ c. $$ 3.67 \times 10^{22} \space atoms \space N $$ d. $$6.54 \times 10^{22} \space atoms \space N $$

Work Step by Step

a. - Calculate or find the molar mass for $ C_2H_5O_2N $: $ C_2H_5O_2N $ : ( 1.008 $\times$ 5 )+ ( 12.01 $\times$ 2 )+ ( 14.01 $\times$ 1 )+ ( 16.00 $\times$ 2 )= 75.07 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 5.00 \space g \times \frac{1 \space mole}{ 75.07 \space g} = 0.0666 \space mole$$ - Each $ C_2H_5O_2N $ has 1 N atoms, thus:$$ 0.0666 \space mole \space C_2H_5O_2N \times \frac{ 1 \space moles \ N }{1 \space mole \space C_2H_5O_2N } \times \frac{6.022 \times 10^{23} \space atoms \ N }{1 \space mole \space N } = 4.01 \times 10^{22} \space atoms \space N $$ b. - Calculate or find the molar mass for $ Mg_3N_2 $: $ Mg_3N_2 $ : ( 24.31 $\times$ 3 )+ ( 14.01 $\times$ 2 )= 100.95 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 5.00 \space g \times \frac{1 \space mole}{ 100.95 \space g} = 0.0495 \underline{3} \space mole$$ - Each $ Mg_3N_2 $ has 2 N atoms, thus:$$ 0.0495\underline{3} \space mole \space Mg_3N_2 \times \frac{ 2 \space moles \ N }{1 \space mole \space Mg_3N_2 } \times \frac{6.022 \times 10^{23} \space atoms \ N }{1 \space mole \space N } = 5.97 \times 10^{22} \space atoms \space N $$ c. - Calculate or find the molar mass for $ Ca(NO_3)_2 $: $ Ca(NO_3)_2 $ : ( 40.08 $\times$ 1 )+ ( 14.01 $\times$ 2 )+ ( 16.00 $\times$ 6 )= 164.10 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 5.00 \space g \times \frac{1 \space mole}{ 164.10 \space g} = 0.0305 \space mole$$ - Each $ Ca(NO_3)_2 $ has 2 N atoms, thus:$$ 0.0305 \space mole \space Ca(NO_3)_2 \times \frac{ 2 \space moles \ N }{1 \space mole \space Ca(NO_3)_2 } \times \frac{6.022 \times 10^{23} \space atoms \ N }{1 \space mole \space N } = 3.67 \times 10^{22} \space atoms \space N $$ d. - Calculate or find the molar mass for $ N_2O_4 $: $ N_2O_4 $ : ( 14.01 $\times$ 2 )+ ( 16.00 $\times$ 4 )= 92.02 g/mol - Using the molar mass as a conversion factor, find the amount in moles: $$ 5.00 \space g \times \frac{1 \space mole}{ 92.02 \space g} = 0.0543 \space mole$$ - Each $ N_2O_4 $ has 2 N atoms, thus:$$ 0.0543 \space mole \space N_2O_4 \times \frac{ 2 \space moles \ N }{1 \space mole \space N_2O_4 } \times \frac{6.022 \times 10^{23} \space atoms \ N }{1 \space mole \space N } = 6.54 \times 10^{22} \space atoms \space N $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.