Chemistry: Atoms First (2nd Edition)

Published by Cengage Learning
ISBN 10: 1305079248
ISBN 13: 978-1-30507-924-3

Chapter 13 - Exercises - Page 575b: 36

Answer

a) $HCN(aq) + H_2O(l) \lt -- \gt CN^-(aq) + H_3O^+(aq)$ $K_a = \frac{[H_3O^+][CN^-]}{[HCN]}$ b) $HOC_6H_5(aq) + H_2O(l) \lt -- \gt OC_6{H_5}^-(aq) + H_3O^+(aq)$ $K_a = \frac{[H_3O^+][OC_6{H_5}^-]}{[HOC_6H_5]}$ c) $C_6H_5N{H_3}^+(aq) + H_2O(l) \lt -- \gt C_6H_5NH_2(aq) + H_3O^+(aq)$ $K_a = \frac{[H_3O^+][C_6H_5NH_2]}{[C_6H_5N{H_3}^+]}$

Work Step by Step

a) 1. Write the ionization chemical equation: - Since $HCN$ is an acid, write the reaction where it donates a proton to a water molecule: $HCN(aq) + H_2O(l) \lt -- \gt CN^-(aq) + H_3O^+(aq)$ 2. Now, write the $K_a$ expression: - The $K_a$ expression is the concentrations of the products divided by the concentration of the reactants: $K_a = \frac{[Products]}{[Reactants]}$ $K_a = \frac{[H_3O^+][CN^-]}{[HCN]}$ *** We don't consider the $[H_2O]$, because it is the solvent of the solution. b) 3. Write the ionization chemical equation: - Since $HOC_6H_5$ is an acid, write the reaction where it donates a proton to a water molecule: $HOC_6H_5(aq) + H_2O(l) \lt -- \gt OC_6{H_5}^-(aq) + H_3O^+(aq)$ 4. Now, write the $K_a$ expression: - The $K_a$ expression is the concentrations of the products divided by the concentration of the reactants: $K_a = \frac{[Products]}{[Reactants]}$ $K_a = \frac{[H_3O^+][OC_6{H_5}^-]}{[HOC_6H_5]}$ *** We don't consider the $[H_2O]$, because it is the solvent of the solution. c) 5. Write the ionization chemical equation: - Since $C_6H_5N{H_3}^+$ is an acid, write the reaction where it donates a proton to a water molecule: $C_6H_5N{H_3}^+(aq) + H_2O(l) \lt -- \gt C_6H_5NH_2(aq) + H_3O^+(aq)$ 6. Now, write the $K_a$ expression: - The $K_a$ expression is the concentrations of the products divided by the concentration of the reactants: $K_a = \frac{[Products]}{[Reactants]}$ $K_a = \frac{[H_3O^+][C_6H_5NH_2]}{[C_6H_5N{H_3}^+]}$ *** We don't consider the $[H_2O]$, because it is the solvent of the solution.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.