Answer
$\frac{tan~34^{\circ}}{2~(1-tan^2~34^{\circ})} = \frac{1}{4}~tan~68^{\circ} = 0.619$
Work Step by Step
We can use this identity: $\frac{2~tan~x}{1-tan^2~x} = tan~2x$
$\frac{tan~34^{\circ}}{2~(1-tan^2~34^{\circ})}$
$= \frac{2~tan~34^{\circ}}{4~(1-tan^2~34^{\circ})}$
$= \frac{1}{4}\cdot~\frac{2~tan~34^{\circ}}{(1-tan^2~34^{\circ})}$
$= \frac{1}{4}~tan~68^{\circ}$
$= \frac{1}{4}~(2.475)$
$= 0.619$