Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.5 Double-Angle Identities - 5.5 Exercises - Page 237: 35

Answer

$$\tan(\theta-45^\circ)+\tan(\theta+45^\circ)=2\tan2\theta$$ As 2 sides are equal, the equation has been verified to be an identity. The proof is below.

Work Step by Step

$$\tan(\theta-45^\circ)+\tan(\theta+45^\circ)=2\tan2\theta$$ We would look at the left side first. $$X=\tan(\theta-45^\circ)+\tan(\theta+45^\circ)$$ - Apply the tangent difference and sum identities to $X$, which state $$\tan(A-B)=\frac{\tan A-\tan B}{1+\tan A\tan B}$$ $$\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}$$ $X$ would be $$X=\frac{\tan\theta-\tan45^\circ}{1+\tan\theta\tan45^\circ}+\frac{\tan\theta+\tan45^\circ}{1-\tan\theta\tan45^\circ}$$ $$X=\frac{\tan\theta-1}{1+\tan\theta\times1}+\frac{\tan\theta+1}{1-\tan\theta\times1}$$ $$X=\frac{\tan\theta-1}{1+\tan\theta}+\frac{\tan\theta+1}{1-\tan\theta}$$ $$X=\frac{(\tan\theta-1)(1-\tan\theta)+(1+\tan\theta)^2}{(1+\tan\theta)(1-\tan\theta)}$$ On the numerator, we expand everything. On the denominator, recall that $(A+B)(A-B)=A^2-B^2$ for $A=1$ and $B=\tan\theta$ here. $$X=\frac{(\tan\theta-\tan^2\theta-1+\tan\theta)+(1+\tan^2\theta+2\tan\theta)}{1-\tan^2\theta}$$ $$X=\frac{(\tan\theta+\tan\theta+2\tan\theta)+(-\tan^2\theta+\tan^2\theta)+(-1+1)}{1-\tan^2\theta}$$ $$X=\frac{4\tan\theta}{1-\tan^2\theta}$$ $$X=2\times\frac{2\tan\theta}{1-\tan^2\theta}$$ - $\frac{2\tan\theta}{1-\tan^2\theta}$ can be written into $\tan2\theta$, as stated in the Double-Angle Identity for tangent. $$X=2\tan2\theta$$ Therefore, $$\tan(\theta-45^\circ)+\tan(\theta+45^\circ)=2\tan2\theta$$ As 2 sides are equal, the equation has been verified to be an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.