Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.5 Double-Angle Identities - 5.5 Exercises - Page 237: 36

Answer

The equation $$\cot\theta\tan(\theta+\pi)-\sin(\pi-\theta)\cos\Big(\frac{\pi}{2}-\theta\Big)=\cos^2\theta$$ is verified to be an identity, as proved in the Work Step by Step.

Work Step by Step

$$\cot\theta\tan(\theta+\pi)-\sin(\pi-\theta)\cos\Big(\frac{\pi}{2}-\theta\Big)=\cos^2\theta$$ The left side would be examined first. $$X=\cot\theta\tan(\theta+\pi)-\sin(\pi-\theta)\cos\Big(\frac{\pi}{2}-\theta\Big)$$ - This exercise asks for the application of the identities of tangent sum, sine difference and cosine difference, which state $$\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}$$ $$\sin(A-B)=\sin A\cos B-\cos A\sin B$$ $$\cos(A-B)=\cos A\cos B+\sin A\sin B$$ Expand $\tan(\theta+\pi)$, $\sin(\pi-\theta)$ and $\cos\Big(\frac{\pi}{2}-\theta\Big)$ in terms of the identities, we get $$X=\cot\theta\times\frac{\tan\theta+\tan\pi}{1-\tan\theta\tan\pi}-(\sin\pi\cos\theta-\cos\pi\sin\theta)\times\Big(\cos\frac{\pi}{2}\cos\theta+\sin\frac{\pi}{2}\sin\theta\Big)$$ Recall that $\tan\pi=0$, $\sin\pi=0$, $\cos\pi=-1$, $\cos\frac{\pi}{2}=0$ and $\sin\frac{\pi}{2}=1$. $$X=\cot\theta\times\frac{\tan\theta+0}{1-\tan\theta\times0}-[0\times\cos\theta-(-1)\sin\theta]\times(0\times\cos\theta+1\times\sin\theta)$$ $$X=\cot\theta\times\frac{\tan\theta}{1}-[\sin\theta]\times(\sin\theta)$$ $$X=\cot\theta\tan\theta-\sin^2\theta$$ - From Reciprocal Identities, we get that $\cot\theta=\frac{1}{\tan\theta}$. Thus, $\cot\theta\tan\theta=1$. $$X=1-\sin^2\theta$$ - From Pythagorean Identities, we also get that $1-\sin^2\theta=\cos^2\theta$. Thus, $$X=\cos^2\theta$$ Therefore, we can conclude now that the equation $$\cot\theta\tan(\theta+\pi)-\sin(\pi-\theta)\cos\Big(\frac{\pi}{2}-\theta\Big)=\cos^2\theta$$ is verified to be an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.