Answer
$$\sin75^\circ=\sin15^\circ\cos60^\circ+\cos15^\circ\sin60^\circ$$
23 is with J.
Work Step by Step
$$\sin75^\circ$$
It is true that
$$\sin75^\circ=\sin(15^\circ+60^\circ)$$
This fact points to the use of the sum identity for sine, stating that
$$\sin(A+B)=\sin A\cos B+\cos A\sin B$$
Therefore, for $A=15^\circ$ and $B=60^\circ$:
$$\sin75^\circ=\sin15^\circ\cos60^\circ+\cos15^\circ\sin60^\circ$$
The equation indicates that 23 should be matched with J.