Answer
$$\tan(-35^\circ)=\cot125^\circ$$
19 is matched with H.
Work Step by Step
$$\tan(-35^\circ)$$
We know that $125^\circ-35^\circ=90^\circ$.
Now remind yourself of Cofunction Identity for tangent and cotangents, which state
$$\tan\theta=\cot(90^\circ-\theta)$$
Thus, $$\tan(-35^\circ)=\cot[90^\circ-(-35^\circ)]$$
$$\tan(-35^\circ)=\cot(90^\circ+35^\circ)$$
$$\tan(-35^\circ)=\cot125^\circ$$
which corresponds to choice H. Thus, 19 is matched with H.