Answer
$sin~165^{\circ} = \frac{\sqrt{6}-\sqrt{2}}{4}$
$cos~165^{\circ} = -(\frac{\sqrt{2}+\sqrt{6}}{4})$
$tan~165^{\circ} = \sqrt{3}-2$
$csc~165^{\circ} = \sqrt{6}+\sqrt{2}$
$sec~165^{\circ} = \sqrt{2}-\sqrt{6}$
$cot~165^{\circ} = -(\sqrt{3}+2)$
Work Step by Step
$sin~165^{\circ} = sin(120^{\circ}+45^{\circ})$
$sin~165^{\circ} = sin~120^{\circ}~cos~45^{\circ}+cos~120^{\circ}~sin~45^{\circ}$
$sin~165^{\circ} = (\frac{\sqrt{3}}{2})(\frac{\sqrt{2}}{2})+(-\frac{1}{2})(\frac{\sqrt{2}}{2})$
$sin~165^{\circ} = \frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}$
$sin~165^{\circ} = \frac{\sqrt{6}-\sqrt{2}}{4}$
$cos~165^{\circ} = cos(120^{\circ}+45^{\circ})$
$cos~165^{\circ} = cos~120^{\circ}~cos~45^{\circ}-sin~120^{\circ}~sin~45^{\circ}$
$cos~165^{\circ} = (-\frac{1}{2})(\frac{\sqrt{2}}{2})-(\frac{\sqrt{3}}{2})(\frac{\sqrt{2}}{2})$
$cos~165^{\circ} = -\frac{\sqrt{2}}{4}-\frac{\sqrt{6}}{4}$
$cos~165^{\circ} = -(\frac{\sqrt{2}+\sqrt{6}}{4})$
$tan~165^{\circ} = tan(120^{\circ}+45^{\circ})$
$tan~165^{\circ} = \frac{tan~120^{\circ}+tan~45^{\circ}}{1-tan~120^{\circ}~tan~45^{\circ}}$
$tan~165^{\circ} = \frac{(-\sqrt{3})+(1)}{1-(-\sqrt{3})(1)}$
$tan~165^{\circ} = \frac{1-\sqrt{3}}{1+\sqrt{3}}\cdot \frac{1-\sqrt{3}}{1-\sqrt{3}}$
$tan~165^{\circ} = \frac{4-2\sqrt{3}}{-2}$
$tan~165^{\circ} = \sqrt{3}-2$
$csc~165^{\circ} = \frac{1}{sin~165^{\circ}}$
$csc~165^{\circ} = \frac{1}{\frac{\sqrt{6}-\sqrt{2}}{4}}$
$csc~165^{\circ} = \frac{4}{\sqrt{6}-\sqrt{2}}\cdot \frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}$
$csc~165^{\circ} = \frac{4(\sqrt{6}+\sqrt{2})}{4}$
$csc~165^{\circ} = \sqrt{6}+\sqrt{2}$
$sec~165^{\circ} = \frac{1}{cos~165^{\circ}}$
$sec~165^{\circ} = -\frac{1}{(\frac{\sqrt{2}+\sqrt{6}}{4})}$
$sec~165^{\circ} = -\frac{4}{\sqrt{2}+\sqrt{6}}\cdot \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}}$
$sec~165^{\circ} = -\frac{4(\sqrt{6}-\sqrt{2})}{4}$
$sec~165^{\circ} = \sqrt{2}-\sqrt{6}$
$cot~165^{\circ} = \frac{1}{tan~165^{\circ}}$
$cot~165^{\circ} = \frac{1}{\sqrt{3}-2}\cdot \frac{\sqrt{3}+2}{\sqrt{3}+2}$
$cot~165^{\circ} = \frac{\sqrt{3}+2}{-1}$
$cot~165^{\circ} = -(\sqrt{3}+2)$