Answer
(a) $sin ~\frac{\pi}{12} = \frac{\sqrt{6}-\sqrt{2}}{4}$
$cos ~\frac{\pi}{12} = \frac{\sqrt{6}+\sqrt{2}}{4}$
$tan ~\frac{\pi}{12} = 2-\sqrt{3}$
(b) $sin ~\frac{\pi}{12} = \frac{\sqrt{2-\sqrt{3}}}{2}$
$cos ~\frac{\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}$
$tan ~\frac{\pi}{12} = 2-\sqrt{3}$
Work Step by Step
(a) $sin ~\frac{\pi}{12} = sin~(\frac{\pi}{4}-\frac{\pi}{6})$
$sin ~\frac{\pi}{12} = sin~\frac{\pi}{4}~cos(-\frac{\pi}{6})+cos~\frac{\pi}{4}~sin~(-\frac{\pi}{6})$
$sin ~\frac{\pi}{12} = (\frac{\sqrt{2}}{2})(\frac{\sqrt{3}}{2})+(\frac{\sqrt{2}}{2})(-\frac{1}{2})$
$sin ~\frac{\pi}{12} = \frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}$
$sin ~\frac{\pi}{12} = \frac{\sqrt{6}-\sqrt{2}}{4}$
$cos ~\frac{\pi}{12} = cos~(\frac{\pi}{4}-\frac{\pi}{6})$
$cos ~\frac{\pi}{12} = cos~\frac{\pi}{4}~cos(-\frac{\pi}{6})-sin~\frac{\pi}{4}~sin~(-\frac{\pi}{6})$
$cos ~\frac{\pi}{12} = (\frac{\sqrt{2}}{2})(\frac{\sqrt{3}}{2})-(\frac{\sqrt{2}}{2})(-\frac{1}{2})$
$cos ~\frac{\pi}{12} = \frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4}$
$cos ~\frac{\pi}{12} = \frac{\sqrt{6}+\sqrt{2}}{4}$
$tan ~\frac{\pi}{12} = tan~(\frac{\pi}{4}-\frac{\pi}{6})$
$tan ~\frac{\pi}{12} = \frac{tan~\frac{\pi}{4}-tan~\frac{\pi}{6}}{1+tan~\frac{\pi}{4}~tan~\frac{\pi}{6}}$
$tan ~\frac{\pi}{12} = \frac{1-\frac{1}{\sqrt{3}}}{1+(1)~(\frac{1}{\sqrt{3}})}$
$tan ~\frac{\pi}{12} = \frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}$
$tan ~\frac{\pi}{12} = \frac{\sqrt{3}-1}{\sqrt{3}+1}\cdot \frac{\sqrt{3}-1}{\sqrt{3}-1}$
$tan ~\frac{\pi}{12} = \frac{4-2\sqrt{3}}{2}$
$tan ~\frac{\pi}{12} = 2-\sqrt{3}$
(b) $sin ~\frac{\pi}{12} = sin~(\frac{\pi/6}{2})$
$sin ~\frac{\pi}{12} = \sqrt{\frac{1-cos~\frac{\pi}{6}}{2}}$
$sin ~\frac{\pi}{12} = \sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}$
$sin ~\frac{\pi}{12} = \sqrt{\frac{2-\sqrt{3}}{4}}$
$sin ~\frac{\pi}{12} = \frac{\sqrt{2-\sqrt{3}}}{2}$
$cos ~\frac{\pi}{12} = cos~(\frac{\pi/6}{2})$
$cos ~\frac{\pi}{12} = \sqrt{\frac{1+cos~\frac{\pi}{6}}{2}}$
$cos ~\frac{\pi}{12} = \sqrt{\frac{1+\frac{\sqrt{3}}{2}}{2}}$
$cos ~\frac{\pi}{12} = \sqrt{\frac{2+\sqrt{3}}{4}}$
$cos ~\frac{\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}$
$tan ~\frac{\pi}{12} = tan~(\frac{\pi/6}{2})$
$tan ~\frac{\pi}{12} = \frac{sin~\frac{\pi}{6}}{1+cos~\frac{\pi}{6}}$
$tan ~\frac{\pi}{12} = \frac{\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}$
$tan ~\frac{\pi}{12} = \frac{\frac{1}{2}}{\frac{2+\sqrt{3}}{2}}$
$tan ~\frac{\pi}{12} = \frac{1}{2+\sqrt{3}}\cdot \frac{2-\sqrt{3}}{2-\sqrt{3}}$
$tan ~\frac{\pi}{12} = \frac{2-\sqrt{3}}{1}$
$tan ~\frac{\pi}{12} = 2-\sqrt{3}$