Answer
$ x^2+y^2=y-x$
Work Step by Step
The conversion of polar co-ordinates $(r, \theta)$ to rectangular coordinates $(x,y)$ can be expressed as:
$x=r \ \cos(\theta)$, $y=r \ \sin(\theta) $
where, $r=\sqrt{x^2+y^2}$
We have:
$r = \ \sin (\theta)-\cos (\theta) ~~~(1)$
Multiply equation (1) by $r$ on both sides:
$r^2 = r \ \sin (\theta)-r \cos (\theta)$
Make the necessary substitutions to convert to $x,y$:
$ x^2+y^2=y-x$