Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 8 - Polar Coordinates; Vectors - Section 8.1 Polar Cordinates - 8.1 Assess Your Understanding - Page 592: 75

Answer

$ x^{2}-x+y^{2}=0\quad \quad \text{or}\quad \quad\left(x-\frac{1}{2}\right)^{2}+y^{2}=\frac{1}{4}$

Work Step by Step

Multiply $r$ to both sides of the equation, to obtain $r\cdot r=r\cdot \cos\theta$ $r^{2}=r\cos\theta$ Since $r^{2}=x^{2}+y^{2}$ and $r\cos\theta=x$, then, \begin{align*} r^2&=r\cos\theta\\ x^{2}+y^{2}&=x\\ x^2-x+y^2&=0\end{align*} The equation above can be written in standard form of a circle by completing the square:\begin{align*} \left(x^{2}-x+\frac{1}{4}\right)+y^{2}&=0+\frac{1}{4}\\ \left(x-\frac{1}{2}\right)^2+y^{2}&=\frac{1}{4}\\ \end{align*} Thus, equivalent of the given equation in rectangular coordinates is: $$\left(x-\frac{1}{2}\right)^{2}+y^{2}=\frac{1}{4} \quad \quad \text{or} \quad \quad x^2-x+y^2=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.