Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 5 - Trigonometric Functions - Section 5.4 Graphs of the Sine and Cosine Functions* - 5.4 Assess Your Understanding - Page 431: 19

Answer

Amplitude $=\dfrac{5}{3}$ Period$=3$

Work Step by Step

Recall: For $y=A\sin{(ωx)}$, we have: $\text{Amplitude}=|A|\quad \quad \text{and} \quad \quad \text{Period}=T=\frac{2\pi}{ω}$ Using the fact that $\sin(-\theta)=-\sin\theta$, then $$y=\frac{5}{3}\sin \left(-\frac{2\pi}{3}x\right)=-\frac{5}{3}\sin{\left(\frac{2\pi}{3}x\right)}$$ (By writing like this, we assured that $\omega$ is positive) In $y=-\frac{5}{3}\sin \left(\frac{2\pi}{3}x\right)$ we have $A=-\frac{5}{3}$ and $\omega=\frac{2\pi}{3}$, so Amplitude= $|A|=|\frac{5}{3}|=\frac{5}{3}$ Period $=T=\frac{2\pi}{\omega}=\dfrac{2\pi}{\frac{2\pi}{3}}=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.