Answer
$sin(t)= \frac{2\sqrt 2}{3}$,
$cos(t)= -\frac{1}{3}$,
$tan(t)= -2\sqrt 2$,
$cot(t)= -\frac{\sqrt 2}{4}$,
$sec(t)= -3$,
$csc(t)= \frac{3\sqrt 2}{4}$.
Work Step by Step
Given $x=-\frac{1}{3}, y=\frac{2\sqrt 2}{3}, r=1$, we have:
$sin(t)=y=\frac{2\sqrt 2}{3}$,
$cos(t)=x=-\frac{1}{3}$,
$tan(t)=\frac{y}{x}=-2\sqrt 2$,
$cot(t)=\frac{1}{tan(t)}=-\frac{\sqrt 2}{4}$,
$sec(t)=\frac{1}{cos(t)}=-3$,
$csc(t)=\frac{1}{sin(t)}=\frac{3\sqrt 2}{4}$.