Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.6 Logarithmic and Exponential Equations - 4.6 Assess Your Understanding - Page 337: 62

Answer

$x =$ {$-0.876, 0.876 $}

Work Step by Step

Re-write as: $9^{x}=(3^{2})^{x}=(3^{x})^{2}$ and $3^{x+1}=3^{x} \cdot 4$ We wish to substitute $a=3^{x}$, so the equation becomes: $a^{2}-3a+1=0 $ Use the quadratic formula to find roots. $a=\displaystyle \frac{3 \pm\sqrt{(-3^{2})-4(1)(-3)}}{2(1)}=\frac{3 \pm \sqrt{5}}{2}$ Therefore, $3^{x}=\dfrac{3 \pm \sqrt{5}}{2}$ So, $x=\log_{3}\dfrac{3 + \sqrt{5}}{2} \approx 0.876$ and $x= \log_{3}\dfrac{3 - \sqrt{5}}{2} \approx -0.876$ The solution set is $x =$ {$-0.876, 0.876 $}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.