Answer
$-1$
Work Step by Step
We find the right-hand limit as follows:
$\lim\limits_{x \to 0^{+}} f(x)=\lim\limits_{x \to 0^{+}} \dfrac{x^3-x^2}{x^4+x^2} \\=\lim\limits_{x \to 0^{+}} \dfrac{x^2(x-1)}{x^2 (x^2+1)} \\=\lim\limits_{x \to 0^{+}} \dfrac{x-1}{x^2+1} \\=\dfrac{0-1}{0+1} \\=-1$