Answer
$2$
Work Step by Step
We find the left-hand limit as follows:
$\lim\limits_{x \to 1^{-}} f(x)=\lim\limits_{x \to 1^{-}} \dfrac{x^3-x}{x-1} \\=\lim\limits_{x \to 1^{-}} \dfrac{x(x-1)(x+1)}{x-1} \\=\lim\limits_{x \to 1^{-}} \ x (x+1) \\=(1)(1+1) \\=2$