Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 11 - Sequences; Induction; the Binomial Theorem - Chapter Review - Review Exercises - Page 859: 1

Answer

$a_1=-\dfrac{4}{3} \\a_2=\dfrac{5}{4} \\a_3=-\dfrac{6}{5} \\a_4=\dfrac{7}{6} \\a_5=-\dfrac{8}{7}$

Work Step by Step

We are given: $\{a_n\}=(-1)^n\dfrac{n+3}{n+2}$ In order to determine the remaining values, we will have to substitute $n=1, 2,3,4,5$ into the given sequence. Thus: $a_1=(-1)^1\dfrac{1+3}{1+2}=-\dfrac{4}{3} \\a_2=(-1)^2\dfrac{2+3}{2+2}=\dfrac{5}{4} \\a_3=(-1)^3\dfrac{3+3}{3+2}=-\dfrac{6}{5} \\a_4=(-1)^4\dfrac{4+3}{4+2}=\dfrac{7}{6} \\a_5=(-1)^5\dfrac{5+3}{5+2}=-\dfrac{8}{7}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.