Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Review Exercises - Page 143: 117

Answer

$\displaystyle \frac{2x^{2}-3}{ (x-3)(x+3)(x-2)}, \qquad x\neq\pm 3,2$

Work Step by Step

We find the common denominator first. $ x^{2}-9=(x+3)(x-3)\qquad $(a difference of squares) $ x^{2}-5x+6=(x-2)(x-3)$ ($-2$ and $-3$ are factors of $+6$ whose sum is $-5$) We list the common factors first: $LCD=(x-3)(x+3)(x-2)$ Domain: $ x\neq\pm 3,2$ Multiply each term with 1 (either $\displaystyle \frac{x-3}{x-3}, \displaystyle \frac{x+3}{x+3}$ or $\displaystyle \frac{x-2}{x-2}$) $\displaystyle \frac{x}{ (x-3)(x+3)}\cdot\frac{x-2}{x-2}+\frac{x-1}{(x-2)(x-3)}\cdot\frac{x+3}{x+3}=$ $=\displaystyle \frac{x(x-2)+(x-1)(x+3)}{ (x-3)(x+3)(x-2)}$ $=\displaystyle \frac{x^{2}-2x+x^{2}+3x-x-3}{ (x-3)(x+3)(x-2)}$ $=\displaystyle \frac{2x^{2}-3}{ (x-3)(x+3)(x-2)}, \qquad x\neq\pm 3,2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.