Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 9 - Section 9.5 - Parametric Equations - Exercise Set - Page 1020: 69

Answer

a. $\begin{cases} x=(180\ cos40^\circ) t\\ y=3+(180\ sin40^\circ) t -16t^2 \end{cases}$ b. $t=1\ sec$, $(137.9,102,7)$. $t=2\ sec$, $(275.8,170.4)$. $t=3\ sec$, $(413.7,206.1)$. c. $ 7.3\ sec$, $1006.6\ ft$ d. see explanations.

Work Step by Step

Given $v_0=180\ ft/sec, \theta=40^\circ, h_0=3\ ft$, we have: a. We can write the parametric equations for the position of the ball as $\begin{cases} x=v_0\ cos\theta\ t\\ y=h_0+v_0\ sin\theta\ t -16t^2 \end{cases}$ where $t$ is the time and $-16\ ft/s^2$ is due to the gravity of the Earth. Thus we have $\begin{cases} x=(180\ cos40^\circ) t\\ y=3+(180\ sin40^\circ) t -16t^2 \end{cases}$ b. (i) For $t=1\ sec$, we have $\begin{cases} x=(180\ cos40^\circ) (1)\approx137.9\ ft \\ y=3+(180\ sin40^\circ) (1) -16(1)^2\approx102.7\ ft \end{cases}$ which gives the point $(137.9,102,7)$. (ii) For $t=2\ sec$, we have $\begin{cases} x=(180\ cos40^\circ) (2)\approx275.8\ ft \\ y=3+(180\ sin40^\circ) (2) -16(2)^2\approx170.4\ ft \end{cases}$ which gives the point $(275.8,170.4)$. (iii) For $t=3\ sec$, we have $\begin{cases} x=(180\ cos40^\circ) (3)\approx413.7\ ft \\ y=3+(180\ sin40^\circ) (3) -16(3)^2\approx206.1\ ft \end{cases}$ which gives point $(413.7,206.1)$. c. To find the total flying time of the ball, let $y=0$. We have $3+(180\ sin40^\circ) t -16t^2=0$, which can be solved by either using the quadratic formula or graphically as shown. We have $t\approx7.3\ sec$ (discard the negative solution) and $x=(180\ cos40^\circ) (7.3)\approx1006.6\ ft$ and this answer is consistent with the graph in the exercise. d. From the graph in the exercise, it appears that the ball will reach a maximum height of about $200\ ft$ at a horizontal distance of about $500\ ft$. Algebraically, we can find the maximum in $y$ at $t=-\frac{180\ sin40^\circ}{2(-16)}\approx3.6\ sec$, which gives $y=3+(180\ sin40^\circ) (3.6) -16(3.6)^2\approx212.2\ ft$ and $x=(180\ cos40^\circ) (3.6)\approx496.4\ ft$, which agrees with the graph in the exercise.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.