Answer
$ x=-2+5 \cos t $ ; $ y=3+2 \sin t $
Work Step by Step
The standard form of an ellipse: $\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1$
$ h=-2, k=3; a=5; b=2$
Now, in parametric from:
$ x=h+a \cos t =-2+5 \cos t $
and $ y=k+b \sin t =3+2 \sin t $
So, $ x=-2+5 \cos t $ ; $ y=3+2 \sin t $