Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Concept and Vocabulary Check - Page 931: 8

Answer

To find the multiplicative inverse of an invertible matrix A, we perform row operations on $\left[ \begin{matrix} A & {{I}_{n}} \\ \end{matrix} \right]$ to obtain a matrix of the form $\left[ \begin{matrix} {{I}_{n}} & B \\ \end{matrix} \right]$, where $B={{A}^{-1}}$.

Work Step by Step

Since matrix A is invertible, that is, the matrix is non-singular, this means that the determinant of matrix A is nonzero. Now, to find the inverse of $n\times n$ matrix A, we will find matrix B, whose order is also $n\times n$, such that, $AB={{I}_{n}}$ and if such matrix B exists, this implies $BA={{I}_{n}}$. So, B is called the multiplicative inverse of A, that is, $B={{A}^{-1}}$. Now, write an augmented matrix $\left[ \begin{matrix} A & {{I}_{n}} \\ \end{matrix} \right]$ and use elementary row operations to make the left-hand side of the matrix as an identity matrix of the form $\left[ \begin{matrix} {{I}_{n}} & B \\ \end{matrix} \right]$ and the corresponding right-hand side of the matrix is the inverse of matrix of A, that is: $B={{A}^{-1}}$ Example: We take an example to explain the whole concept. Consider the $2\times 2$ matrix, $A=\left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ \end{matrix} \right]$ Since $\det \left( A \right)=-2$, matrix A is non-singular and hence, ${{A}^{-1}}$ exists. Write the augmented matrix as follows: $\left[ \begin{matrix} 1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1 \\ \end{matrix} \right]$ Perform the elementary row operations as follows: ${{R}_{2}}\to {{R}_{2}}-3{{R}_{1}}$ gives: $\left[ \begin{matrix} 1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1 \\ \end{matrix} \right]$ ${{R}_{2}}\to -\frac{1}{2}{{R}_{2}}$ gives: $\left[ \begin{matrix} 1 & 2 & 1 & 0 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-2{{R}_{2}}$ gives: $\left[ \begin{matrix} 1 & 0 & -2 & -1 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2} \\ \end{matrix} \right]$ So, $B={{A}^{-1}}=\left[ \begin{matrix} -2 & -1 \\ \frac{3}{2} & -\frac{1}{2} \\ \end{matrix} \right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.