Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Concept and Vocabulary Check - Page 931: 4

Answer

True, only square matrices have multiplicative inverses.

Work Step by Step

The multiplicative identity of the matrix is denoted by ${{I}_{N}}$. In the $n\times n$ identity square matrix, we have 1s on the diagonal and 0s elsewhere. The representing of the square identity matrix is given by: $\begin{align} & {{I}_{1}}=\left[ 1 \right] \\ & {{I}_{2}}=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & {{I}_{3}}=\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right] \\ \end{align}$ As example: Let, $M=\left[ \begin{matrix} -4 & -3 \\ -6 & 5 \\ \end{matrix} \right]$ This is a square matrix of order $2\times 2$. And the identity matrix is: $\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right]$ Now, the rule of matrix multiplication is given by $A=MI$ Then, $\begin{align} & A=\left[ \begin{matrix} -4 & -3 \\ -6 & 5 \\ \end{matrix} \right]\times \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} -4 & -3 \\ -6 & 5 \\ \end{matrix} \right] \end{align}$ Hence, the identity matrix is $A=\left[ \begin{matrix} -4 & -3 \\ -6 & 5 \\ \end{matrix} \right]$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.