Answer
For $n\times n$ matrix $A$ and $B$, if $AB={{I}_{n}}$ and $BA={{I}_{n}}$, then $B$ is called the
Multiplicative Inverse of $A$.
Work Step by Step
The multiplicative identity of the matrix is denoted by ${{I}_{N}}$. In the $n\times n$ square matrix, we have $n$ elements with 1 down the main diagonal and 0s elsewhere. The multiplicative identity is the property of multiplication which states that when 1 is multiplied by any real number, the real number does not change; the
number 1 is called the multiplicative identity for real numbers.
Consider the identity matrices:
$\begin{align}
& {{I}_{1}}=\left[ 1 \right] \\
& {{I}_{2}}=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& {{I}_{3}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right] \\
\end{align}$
These are the examples of identity matrices of order $1\times 1,2\times 2,3\times 3...........,n\times n.$
As example: let $A=\left[ \begin{matrix}
4 & -3 \\
-5 & 4 \\
\end{matrix} \right],B=\left[ \begin{matrix}
4 & 3 \\
5 & 4 \\
\end{matrix} \right]$
Now, we will compute the matrix as $\left[ AB \right]$
$\begin{align}
& AB=\left[ \begin{matrix}
4 & -3 \\
-5 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
4 & 3 \\
5 & 4 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
4\times 4+\left( -3 \right)\times 5 & 4\times 3+\left( -3 \right)\times 4 \\
\left( -5 \right)\times 4+4\times 5 & \left( -5 \right)\times 3+4\times 4 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{2}}
\end{align}$
Now we will compute the matrix as $\left[ BA \right]$
$\begin{align}
& BA=\left[ \begin{matrix}
4 & 3 \\
5 & 4 \\
\end{matrix} \right]\left[ \begin{matrix}
4 & -3 \\
-5 & 4 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
4\times 4+3\times \left( -5 \right) & 4\times \left( -3 \right)+3\times 4 \\
5\times 4+4\times \left( -5 \right) & 5\times \left( -3 \right)+4\times 4 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] \\
& ={{I}_{2}}
\end{align}$
Thus, both matrices $AB$ and $BA$ are equal to the identity matrix.