Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Concept and Vocabulary Check - Page 931: 3

Answer

For $n\times n$ matrix $A$ and $B$, if $AB={{I}_{n}}$ and $BA={{I}_{n}}$, then $B$ is called the Multiplicative Inverse of $A$.

Work Step by Step

The multiplicative identity of the matrix is denoted by ${{I}_{N}}$. In the $n\times n$ square matrix, we have $n$ elements with 1 down the main diagonal and 0s elsewhere. The multiplicative identity is the property of multiplication which states that when 1 is multiplied by any real number, the real number does not change; the number 1 is called the multiplicative identity for real numbers. Consider the identity matrices: $\begin{align} & {{I}_{1}}=\left[ 1 \right] \\ & {{I}_{2}}=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & {{I}_{3}}=\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right] \\ \end{align}$ These are the examples of identity matrices of order $1\times 1,2\times 2,3\times 3...........,n\times n.$ As example: let $A=\left[ \begin{matrix} 4 & -3 \\ -5 & 4 \\ \end{matrix} \right],B=\left[ \begin{matrix} 4 & 3 \\ 5 & 4 \\ \end{matrix} \right]$ Now, we will compute the matrix as $\left[ AB \right]$ $\begin{align} & AB=\left[ \begin{matrix} 4 & -3 \\ -5 & 4 \\ \end{matrix} \right]\left[ \begin{matrix} 4 & 3 \\ 5 & 4 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 4\times 4+\left( -3 \right)\times 5 & 4\times 3+\left( -3 \right)\times 4 \\ \left( -5 \right)\times 4+4\times 5 & \left( -5 \right)\times 3+4\times 4 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & ={{I}_{2}} \end{align}$ Now we will compute the matrix as $\left[ BA \right]$ $\begin{align} & BA=\left[ \begin{matrix} 4 & 3 \\ 5 & 4 \\ \end{matrix} \right]\left[ \begin{matrix} 4 & -3 \\ -5 & 4 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 4\times 4+3\times \left( -5 \right) & 4\times \left( -3 \right)+3\times 4 \\ 5\times 4+4\times \left( -5 \right) & 5\times \left( -3 \right)+4\times 4 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right] \\ & ={{I}_{2}} \end{align}$ Thus, both matrices $AB$ and $BA$ are equal to the identity matrix.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.