Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.4 - Multiplicative Inverses of Matrices and Matrix Equations - Concept and Vocabulary Check - Page 931: 7

Answer

The provided matrix $ A=\left[ \begin{matrix} 3 & 2 \\ 9 & 6 \\ \end{matrix} \right]$ is invertible; False.

Work Step by Step

Consider the matrix $ A=\left[ \begin{matrix} 3 & 2 \\ 9 & 6 \\ \end{matrix} \right]$. Now, we will check if the matrix is invertible or not. Then, consider the matrix $ A=\left[ \begin{matrix} 3 & 2 \\ 9 & 6 \\ \end{matrix} \right]$. Now, the inverse of matrix $\left[ A \right]$ is equal to: ${{\left[ A \right]}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right]$ Now, compare the matrix to the original matrix. So, $\begin{align} & a=3 \\ & b=2 \\ & c=9 \\ & d=6 \end{align}$ Now, the inverse is: ${{\left[ A \right]}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right]$ Substitute the values to get, $\begin{align} & {{\left[ A \right]}^{-1}}=\frac{1}{\left| ad-bc \right|}\left[ \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right] \\ & =\frac{1}{\left| 18-18 \right|}\left[ \begin{matrix} 6 & -2 \\ -9 & 3 \\ \end{matrix} \right] \\ & =\frac{1}{0}\left[ \begin{matrix} 6 & -2 \\ -9 & 3 \\ \end{matrix} \right] \end{align}$ So, $ ad-bc=0$ which shows that the matrix is not invertible.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.