Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.3 - Matrix Operations and Their Applications - Exercise Set - Page 917: 31

Answer

a) $AB=\left[ \begin{matrix} 4 & -5 & 8 \\ 6 & -1 & 5 \\ 0 & 4 & -6 \\ \end{matrix} \right]$ b) $BA=\left[ \begin{matrix} 5 & -2 & 7 \\ 17 & -3 & 2 \\ 3 & 0 & -5 \\ \end{matrix} \right]$

Work Step by Step

(a) $\begin{align} & AB=\left[ \begin{matrix} 1 & -1 & 4 \\ 4 & -1 & 3 \\ 2 & 0 & -2 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 1 & 0 \\ 1 & 2 & 4 \\ 1 & -1 & 3 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( 1 \right)-1\left( 1 \right)+4\left( 1 \right) & 1\left( 1 \right)-1\left( 2 \right)+4\left( -1 \right) & 1\left( 0 \right)-1\left( 4 \right)+4\left( 3 \right) \\ 4\left( 1 \right)-1\left( 1 \right)+3\left( 1 \right) & 4\left( 1 \right)-1\left( 2 \right)+3\left( -1 \right) & 4\left( 0 \right)-1\left( 4 \right)+3\left( 3 \right) \\ 2\left( 1 \right)+0\left( 1 \right)-2\left( 1 \right) & 2\left( 1 \right)+0\left( 2 \right)-2\left( -1 \right) & 2\left( 0 \right)+0\left( -2 \right)-2\left( 3 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1-1+4 & 1-2-4 & 0-4+12 \\ 4-1+3 & 4-2-3 & 0-4+9 \\ 2+0-2 & 2+0+2 & 0-0-6 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 4 & -5 & 8 \\ 6 & -1 & 5 \\ 0 & 4 & -6 \\ \end{matrix} \right] \end{align}$ (b) $\begin{align} & BA=\left[ \begin{matrix} 1 & 1 & 0 \\ 1 & 2 & 4 \\ 1 & -1 & 3 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & -1 & 4 \\ 4 & -1 & 3 \\ 2 & 0 & -2 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( 1 \right)+1\left( 4 \right)+0\left( 2 \right) & 1\left( -1 \right)+1\left( -1 \right)+0\left( 0 \right) & 1\left( 4 \right)+1\left( 3 \right)+0\left( -2 \right) \\ 1\left( 1 \right)+2\left( 4 \right)+4\left( 2 \right) & 1\left( -1 \right)+2\left( -1 \right)+4\left( 0 \right) & 1\left( 4 \right)+2\left( 3 \right)+4\left( -2 \right) \\ 1\left( 1 \right)-1\left( 4 \right)+3\left( 2 \right) & 1\left( -1 \right)-1\left( -1 \right)+3\left( 0 \right) & 1\left( 4 \right)-1\left( 3 \right)+3\left( -2 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1+4+0 & -1-1+0 & 4+3+0 \\ 1+8+8 & -1-2+0 & 4+6-8 \\ 1-4+6 & -1+1+0 & 4-3-6 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 5 & -2 & 7 \\ 17 & -3 & 2 \\ 3 & 0 & -5 \\ \end{matrix} \right] \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.