Answer
$15$ desks of first type, $10$ desks of second type and $20$ desks of third type should be produced each week.
Work Step by Step
Let $x$ be the number of desks of the first type, $y$ be the number of desks of the second type and $z$ be the number of desks of the third type.
It is provided that the maximum hours for cutting three types of desks should be 100.
This implies,
$2x+3y+2z=100$
It is provided that the maximum hours for constructing the three types of desks should be 100.
This implies,
$2x+y+3z=100$
It is provided that the maximum hours for finishing the three types of desks should be 65.
This implies,
$x+y+2z=65$
Therefore, the system of equations is:
$\begin{align}
& 2x+3y+2z=100 \\
& 2x+y+3z=100 \\
& x+y+2z=65
\end{align}$
First write the augmented matrix for the given system of equations:
The augmented matrix obtained from equations is,
$\left[ \begin{matrix}
2 & 3 & 2 & 100 \\
2 & 1 & 3 & 100 \\
1 & 1 & 2 & 65 \\
\end{matrix} \right]$
Now, use row operation to reduce the matrix to row echelon form.
${{R}_{1}}\to \frac{1}{2}{{R}_{1}}$, we get
$\left[ \begin{matrix}
1 & \frac{3}{2} & 1 & 50 \\
2 & 1 & 3 & 100 \\
1 & 1 & 2 & 65 \\
\end{matrix} \right]$
${{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}$, we get
$\left[ \begin{matrix}
1 & \frac{3}{2} & 1 & 50 \\
0 & -2 & 1 & 0 \\
1 & 1 & 2 & 65 \\
\end{matrix} \right]$
${{R}_{3}}\to {{R}_{3}}-{{R}_{1}}$, we get
$\left[ \begin{matrix}
1 & \frac{3}{2} & 1 & 50 \\
0 & -2 & 1 & 0 \\
0 & \frac{-1}{2} & 1 & 15 \\
\end{matrix} \right]$
${{R}_{2}}\to \frac{-1}{2}{{R}_{2}}$, we get
$\left[ \begin{matrix}
1 & \frac{3}{2} & 1 & 50 \\
0 & 1 & \frac{-1}{2} & 0 \\
0 & \frac{-1}{2} & 1 & 15 \\
\end{matrix} \right]$
${{R}_{3}}\to {{R}_{3}}+\frac{1}{2}{{R}_{2}}$, we get
$\left[ \begin{matrix}
1 & \frac{3}{2} & 1 & 50 \\
0 & 1 & \frac{-1}{2} & 0 \\
0 & 0 & \frac{3}{4} & 15 \\
\end{matrix} \right]$
${{R}_{3}}\to \frac{4}{3}{{R}_{3}}$, we get
$\left[ \begin{matrix}
1 & \frac{3}{2} & 1 & 50 \\
0 & 1 & \frac{-1}{2} & 0 \\
0 & 0 & 1 & 20 \\
\end{matrix} \right]$
${{R}_{2}}\to {{R}_{2}}+\frac{1}{2}{{R}_{3}}$, we get
$\left[ \begin{matrix}
1 & \frac{3}{2} & 1 & 50 \\
0 & 1 & 0 & 10 \\
0 & 0 & 1 & 20 \\
\end{matrix} \right]$
${{R}_{1}}\to {{R}_{1}}-{{R}_{3}}$, we get
$\left[ \begin{matrix}
1 & \frac{3}{2} & 0 & 50 \\
0 & 1 & 0 & 10 \\
0 & 0 & 1 & 20 \\
\end{matrix} \right]$
${{R}_{1}}\to {{R}_{1}}-\frac{3}{92}{{R}_{1}}$, we get
$\left[ \begin{matrix}
1 & 0 & 0 & 15 \\
0 & 1 & 0 & 10 \\
0 & 0 & 1 & 20 \\
\end{matrix} \right]$
Thus, $x=15,y=10,z=20$
Hence, $15$ desks of first type, $10$ desks of second type and $20$ desks of third type should be produced each week.