Answer
The solution set of the given system of equations is $\left( {{e}^{1}},{{e}^{-1}},{{e}^{2}}\text{ and }{{e}^{-3}} \right)$.
Work Step by Step
The solution set of the given system of equations is $\left( {{e}^{1}},{{e}^{-1}},{{e}^{2}}\text{ and }{{e}^{-3}} \right)$.
It is provided that, $\ln w=A,\ln x=B,\ln y=C\text{ and }\ln z=D$
Now, the resulting system of equations is:
$\begin{align}
& A+B+C+D=-1 \\
& -A+4B+C-D=0 \\
& A-2B+C-2D=11 \\
& -A-2B+C+2D=-3
\end{align}$
First write the augmented matrix for the given system of equations. Therefore,
the augmented matrix is,
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
-1 & 4 & 1 & -1 \\
1 & -2 & 1 & -2 \\
-1 & -2 & 1 & 2 \\
\end{matrix} \right|\begin{matrix}
-1 \\
0 \\
11 \\
-3 \\
\end{matrix} \right]$
Now, reduce the matrix to row echelon form by using the row operation
First apply ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 5 & 2 & 0 \\
1 & -2 & 1 & -2 \\
-1 & -2 & 1 & 2 \\
\end{matrix} \right|\begin{matrix}
-1 \\
-1 \\
11 \\
-3 \\
\end{matrix} \right]$
${{R}_{3}}\to {{R}_{3}}-{{R}_{1}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 5 & 2 & 0 \\
0 & -3 & 0 & -3 \\
-1 & -2 & 1 & 2 \\
\end{matrix} \right|\begin{matrix}
-1 \\
-1 \\
12 \\
-3 \\
\end{matrix} \right]$
${{R}_{4}}\to {{R}_{4}}+{{R}_{1}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 5 & 2 & 0 \\
0 & -3 & 0 & -3 \\
0 & -1 & 2 & 3 \\
\end{matrix} \right|\begin{matrix}
-1 \\
-1 \\
12 \\
-4 \\
\end{matrix} \right]$
${{R}_{2}}\to \frac{1}{5}{{R}_{2}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & \frac{2}{5} & 0 \\
0 & -3 & 0 & -3 \\
0 & -1 & 2 & 3 \\
\end{matrix} \right|\begin{matrix}
-1 \\
\frac{-1}{5} \\
12 \\
-4 \\
\end{matrix} \right]$
${{R}_{3}}\to {{R}_{3}}+3{{R}_{2}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & \frac{2}{5} & 0 \\
0 & 0 & \frac{6}{5} & -3 \\
0 & -1 & 2 & 3 \\
\end{matrix} \right|\begin{matrix}
-1 \\
\frac{-1}{5} \\
\frac{57}{5} \\
-4 \\
\end{matrix} \right]$
${{R}_{4}}\to {{R}_{4}}+{{R}_{2}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & \frac{2}{5} & 0 \\
0 & 0 & \frac{6}{5} & -3 \\
0 & 0 & \frac{12}{5} & 3 \\
\end{matrix} \right|\begin{matrix}
-1 \\
\frac{-1}{5} \\
\frac{57}{5} \\
\frac{-21}{5} \\
\end{matrix} \right]$
${{R}_{3}}\to \frac{5}{6}{{R}_{3}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & \frac{2}{5} & 0 \\
0 & 0 & 1 & \frac{-5}{2} \\
0 & 0 & \frac{12}{5} & 3 \\
\end{matrix} \right|\begin{matrix}
-1 \\
\frac{-1}{5} \\
\frac{19}{2} \\
\frac{-21}{5} \\
\end{matrix} \right]$
${{R}_{4}}\to {{R}_{4}}-\frac{12}{5}{{R}_{3}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & \frac{2}{5} & 0 \\
0 & 0 & 1 & \frac{-5}{2} \\
0 & 0 & 0 & 9 \\
\end{matrix} \right|\begin{matrix}
-1 \\
\frac{-1}{5} \\
\frac{19}{2} \\
-27 \\
\end{matrix} \right]$
${{R}_{4}}\to \frac{1}{9}{{R}_{4}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & \frac{2}{5} & 0 \\
0 & 0 & 1 & \frac{-5}{2} \\
0 & 0 & 0 & 1 \\
\end{matrix} \right|\begin{matrix}
-1 \\
\frac{-1}{5} \\
\frac{19}{2} \\
-3 \\
\end{matrix} \right]$
${{R}_{3}}\to {{R}_{3}}+\frac{5}{2}{{R}_{4}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & \frac{2}{5} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{matrix} \right|\begin{matrix}
-1 \\
\frac{-1}{5} \\
2 \\
-3 \\
\end{matrix} \right]$
${{R}_{1}}\to {{R}_{1}}-{{R}_{4}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 0 \\
0 & 1 & \frac{2}{5} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{matrix} \right|\begin{matrix}
2 \\
\frac{-1}{5} \\
2 \\
-3 \\
\end{matrix} \right]$
${{R}_{2}}\to {{R}_{2}}-\frac{2}{5}{{R}_{1}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{matrix} \right|\begin{matrix}
2 \\
-1 \\
2 \\
-3 \\
\end{matrix} \right]$
${{R}_{1}}\to {{R}_{1}}-{{R}_{3}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{matrix} \right|\begin{matrix}
0 \\
-1 \\
2 \\
-3 \\
\end{matrix} \right]$
${{R}_{1}}\to {{R}_{1}}-{{R}_{2}}$, to get
$\left[ \left. \begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{matrix} \right|\begin{matrix}
1 \\
-1 \\
2 \\
-3 \\
\end{matrix} \right]$
By the Gauss Jordan Elimination Method,
$A=1,B=-1,C=2,D=-3$
Now,
$\begin{align}
& \ln w=A \\
& w={{e}^{A}} \\
& w={{e}^{1}}
\end{align}$
And
$\begin{align}
& \ln x=B \\
& x={{e}^{B}} \\
& x={{e}^{-1}}
\end{align}$
And
$\begin{align}
& \ln y=C \\
& y={{e}^{C}} \\
& y={{e}^{2}}
\end{align}$
And
$\begin{align}
& \ln z=D \\
& z={{e}^{D}} \\
& z={{e}^{-3}}
\end{align}$
Hence, the solution set of the given system of equations is $\left( {{e}^{1}},{{e}^{-1}},{{e}^{2}}\text{ and }{{e}^{-3}} \right)$.