Answer
The solution set of the provided system of equations is $x=e,y={{e}^{-3}},z={{e}^{-2}}\text{ and }w={{e}^{-1}}$.
Work Step by Step
Consider, $\ln w=A,\ln x=B,\ln y=C,\ln z=D$
The resulting system of equations is:
$\begin{align}
& 2A+B+3C-2D=-6 \\
& 4A+3B+C-D=-2 \\
& A+B+C+D=-5 \\
& A+B-C-D=-5
\end{align}$
First write the augmented matrix for the given system of equations:
Augmented matrix:
$\left[ \left. \begin{matrix}
2 & 1 & 3 & -2 \\
4 & 3 & 1 & -1 \\
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\end{matrix} \right|\begin{matrix}
-6 \\
-2 \\
-5 \\
5 \\
\end{matrix} \right]$
Now, use row operation to reduce the matrix to row echelon form.
First apply ${{R}_{1}}\leftrightarrow {{R}_{3}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
4 & 3 & 1 & -1 \\
2 & 1 & 3 & -2 \\
1 & 1 & -1 & -1 \\
\end{matrix} \right|\begin{matrix}
-5 \\
-2 \\
-6 \\
5 \\
\end{matrix} \right]$
Now apply ${{R}_{2}}\to {{R}_{2}}-4{{R}_{1}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & -1 & -3 & -5 \\
2 & 1 & 3 & -2 \\
1 & 1 & -1 & -1 \\
\end{matrix} \right|\begin{matrix}
-5 \\
18 \\
-6 \\
5 \\
\end{matrix} \right]$
Apply ${{R}_{2}}\to \left( -1 \right){{R}_{2}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 5 \\
2 & 1 & 3 & -2 \\
1 & 1 & -1 & -1 \\
\end{matrix} \right|\begin{matrix}
-5 \\
-18 \\
-6 \\
5 \\
\end{matrix} \right]$
Apply ${{R}_{3}}\to {{R}_{3}}-2{{R}_{1}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 5 \\
0 & -1 & 1 & -4 \\
1 & 1 & -1 & -1 \\
\end{matrix} \right|\begin{matrix}
-5 \\
-18 \\
4 \\
5 \\
\end{matrix} \right]$
Apply ${{R}_{3}}\to {{R}_{3}}+{{R}_{2}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 5 \\
0 & 0 & 4 & 1 \\
1 & 1 & -1 & -1 \\
\end{matrix} \right|\begin{matrix}
-5 \\
-18 \\
-14 \\
5 \\
\end{matrix} \right]\,$
Apply ${{R}_{4}}\to {{R}_{4}}-{{R}_{1}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 5 \\
0 & 0 & 4 & 1 \\
0 & 0 & -2 & -2 \\
\end{matrix} \right|\begin{matrix}
-5 \\
-18 \\
-14 \\
10 \\
\end{matrix} \right]$
Apply ${{R}_{4}}\to 2{{R}_{4}}+{{R}_{3}}$, to get
$\left[ \left. \begin{matrix}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 5 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & -3 \\
\end{matrix} \right|\begin{matrix}
-5 \\
-18 \\
-14 \\
6 \\
\end{matrix} \right]$
Write the system of equations corresponding to the reduced matrix
$A+B+C+D=-5$ …… (I)
$B+3C+5D=-18$ …… (II)
$4C+D=-14$ …… (III)
$-3D=6$ …… (IV)
From equation (IV),
$D=\frac{-6}{3}=-2$
To find $C$, substitute the value of $D$ in equation (III),
$\begin{align}
& 4C-2=-14 \\
& 4C=-14+2 \\
& 4C=-12 \\
& C=\frac{-12}{4}
\end{align}$
Simplify further to get,
$C=-3$
To find $B$, substitute the value of $C,D$ in equation (II),
$\begin{align}
& B+3\times -3+5\times -2=-18 \\
& B-9-10=-18 \\
& B-19=-18 \\
& B=-18+19
\end{align}$
After further simplification, we get,
So, $B=1$
To find $A$, substitute the value of $B,C,D$ in equation (I),
$\begin{align}
& A+1-3-2=-5 \\
& A+1-5=-5 \\
& A-4=-5 \\
& A=-5+4
\end{align}$
Thus, $A=-1$
Now,
$\begin{align}
& \ln w=A \\
& w={{e}^{A}} \\
& w={{e}^{-1}}
\end{align}$
And
$\begin{align}
& \ln x=B \\
& x={{e}^{B}} \\
& x=e
\end{align}$
And
$\begin{align}
& \ln y=C \\
& y={{e}^{C}} \\
& y={{e}^{-3}}
\end{align}$
and,
$\begin{align}
& \ln z=D \\
& z={{e}^{D}} \\
& z={{e}^{-2}}
\end{align}$
Hence, the solution set of the provided system of equations is $\left( {{e}^{-1}},e,{{e}^{-3}},{{e}^{-2}} \right)$.