Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Section 8.1 - Matrix Solutions to Linear Systems - Exercise Set - Page 894: 47

Answer

4 ounces of food A, $\frac{1}{2}$ ounces of food B and 1 ounce of food C should be used.

Work Step by Step

Let $x$ be the number of ounces of food A, $y$ be the number of ounces of food B and $z$ be the number of ounces of food C. It is provided that three foods allow exactly 660 calories, 25 grams of protein, and 425 milligrams of vitamin C. Therefore, from the provided table, the system of equations is: $\begin{align} & 40x+200y+400z=660 \\ & 5x+2y+4z=25 \\ & 30x+10y+300z=425 \end{align}$ First write the augmented matrix for the given system of equations: Augmented matrix is: $\left[ \begin{matrix} 40 & 200 & 400 & 660 \\ 5 & 2 & 4 & 25 \\ 30 & 10 & 300 & 425 \\ \end{matrix} \right]$ Now, reduce the matrix to row echelon form by using row operation ${{R}_{1}}\to \frac{1}{40}{{R}_{1}}$, we get $\left[ \begin{matrix} 1 & 5 & 10 & \frac{33}{2} \\ 5 & 2 & 4 & 25 \\ 30 & 10 & 300 & 425 \\ \end{matrix} \right]$ ${{R}_{2}}\to {{R}_{2}}-5{{R}_{1}}$, we get $\left[ \begin{matrix} 1 & 5 & 10 & \frac{33}{2} \\ 0 & -23 & -46 & \frac{-115}{2} \\ 30 & 10 & 300 & 425 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}-30{{R}_{1}}$, we get $\left[ \begin{matrix} 1 & 5 & 10 & \frac{33}{2} \\ 0 & -23 & -46 & \frac{-115}{2} \\ 0 & -140 & 0 & -70 \\ \end{matrix} \right]$ ${{R}_{2}}\to \frac{-1}{23}{{R}_{2}}$, we get $\left[ \begin{matrix} 1 & 5 & 10 & \frac{33}{2} \\ 0 & 1 & 2 & \frac{5}{2} \\ 0 & -140 & 0 & -70 \\ \end{matrix} \right]$ ${{R}_{3}}\to {{R}_{3}}+140{{R}_{2}}$, we get $\left[ \begin{matrix} 1 & 5 & 10 & \frac{33}{2} \\ 0 & 1 & 2 & \frac{5}{2} \\ 0 & 0 & 280 & 280 \\ \end{matrix} \right]$ ${{R}_{3}}\to \frac{1}{280}{{R}_{3}}$, we get $\left[ \begin{matrix} 1 & 5 & 10 & \frac{33}{2} \\ 0 & 1 & 2 & \frac{5}{2} \\ 0 & 0 & 1 & 1 \\ \end{matrix} \right]$ ${{R}_{2}}\to {{R}_{2}}-2{{R}_{3}}$, we get $\left[ \begin{matrix} 1 & 5 & 10 & \frac{33}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 1 \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-10{{R}_{3}}$, we get $\left[ \begin{matrix} 1 & 5 & 0 & \frac{13}{2} \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 1 \\ \end{matrix} \right]$ ${{R}_{1}}\to {{R}_{1}}-5{{R}_{2}}$, we get $\left[ \begin{matrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 1 \\ \end{matrix} \right]$ Thus, $x=4,y=\frac{1}{2},z=1$ Hence, $4\text{ ounces}$ of food A, $\frac{1}{2}\text{ ounces}$ of food B and $1\text{ ounces}$ of food C should be used.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.