Answer
The coefficients are, $ a=\frac{5}{8},b=-50,c=1150\ $ and $ average=212.5$.
Work Step by Step
Consider that the given data set can be modeled by
$ y=a{{x}^{2}}+bx+c $
Therefore
$\begin{align}
& a{{\left( 20 \right)}^{2}}+b\left( 20 \right)+c=400 \\
& a{{\left( 40 \right)}^{2}}+b\left( 40 \right)+c=150 \\
& a{{\left( 60 \right)}^{2}}+b\left( 60 \right)+c=400
\end{align}$
That is
$\begin{align}
& 400a+20b+c=400 \\
& 1600a+40b+c=150 \\
& 3600a+60b+c=400
\end{align}$
Therefore, the system of equations can be written in matrix form as below:
$ AX=b $
Where
$ A=\left[ \begin{array}{*{35}{r}}
400 & 20 & 1 \\
1600 & 40 & 1 \\
3600 & 60 & 1 \\
\end{array} \right];b=\left[ \begin{array}{*{35}{r}}
400 \\
150 \\
400 \\
\end{array} \right];X=\left[ \begin{matrix}
a \\
b \\
c \\
\end{matrix} \right]$
Therefore, using Cramer’s rule, the solution of the system of equations is given by:
$ a=\frac{\left| {{A}_{a}} \right|}{\left| A \right|},b=\frac{\left| {{A}_{b}} \right|}{\left| A \right|},c=\frac{\left| {{A}_{c}} \right|}{\left| A \right|}$
Where
${{A}_{x}}=\left[ \begin{array}{*{35}{r}}
400 & 20 & 1 \\
150 & 40 & 1 \\
400 & 60 & 1 \\
\end{array} \right],{{A}_{y}}=\left[ \begin{array}{*{35}{r}}
400 & 400 & 1 \\
1600 & 150 & 1 \\
3600 & 400 & 1 \\
\end{array} \right],{{A}_{z}}=\left[ \begin{array}{*{35}{r}}
400 & 20 & 400 \\
1600 & 40 & 150 \\
3600 & 60 & 400 \\
\end{array} \right]$
Consider the determinant of the matrix
$\begin{align}
& \left| A \right|=\left| \begin{array}{*{35}{r}}
400 & 20 & 1 \\
1600 & 40 & 1 \\
3600 & 60 & 1 \\
\end{array} \right| \\
& =\left| \begin{array}{*{35}{r}}
400 & 20 & 1 \\
1200 & 20 & 0 \\
3200 & 40 & 0 \\
\end{array} \right| \\
& =1200\times 40-3200\times 20 \\
& =-16000
\end{align}$
And
$\begin{align}
& \left| {{A}_{x}} \right|=\left| \begin{array}{*{35}{r}}
400 & 20 & 1 \\
150 & 40 & 1 \\
400 & 60 & 1 \\
\end{array} \right| \\
& =\left| \begin{array}{*{35}{r}}
400 & 20 & 1 \\
-250 & 20 & 0 \\
0 & 40 & 0 \\
\end{array} \right| \\
& =-250\times 40-0\times 20 \\
& =-10000
\end{align}$
And
$\begin{align}
& \left| {{A}_{y}} \right|=\left| \begin{array}{*{35}{r}}
400 & 400 & 1 \\
1600 & 150 & 1 \\
3600 & 400 & 1 \\
\end{array} \right| \\
& =\left| \begin{array}{*{35}{r}}
400 & 400 & 1 \\
1200 & -250 & 0 \\
3200 & 0 & 0 \\
\end{array} \right| \\
& =0+250\times 3200 \\
& =800000
\end{align}$
And
$\begin{align}
& \left| {{A}_{z}} \right|=\left| \begin{array}{*{35}{r}}
400 & 20 & 400 \\
1600 & 40 & 150 \\
3600 & 60 & 400 \\
\end{array} \right| \\
& =\left| \begin{array}{*{35}{r}}
400 & 20 & 400 \\
0 & -40 & -1450 \\
0 & -120 & -3200 \\
\end{array} \right| \\
& =400\left( 40\times 3200-120\times 1450 \right) \\
& =-18400000\text{ }
\end{align}$
Therefore, the solution of the system of equations is given by
$\begin{align}
& a=\frac{-10000}{-16000}=\frac{5}{8} \\
& b=\frac{800000}{-16000}=-50 \\
& c=\frac{-18400}{-16}=1150
\end{align}$
Therefore, the fitted model
$ y=\frac{5}{8}{{x}^{2}}-50x+1150$
Consider
$\begin{align}
& y\left( 30 \right)=\frac{5}{8}\times {{30}^{2}}-50\times 30+1150 \\
& =212.5 \\
& y\left( 50 \right)=\frac{5}{8}\times {{50}^{2}}-50\times 50+1150 \\
& =212.5
\end{align}$
Therefore, the average accident rate per day for a driver of age of 30 and 50 is 212.5.
The predicted model is $ a=\frac{5}{8},b=-50,c=1150$