Answer
The solution is, $\underline{x=-3,y=0.5,z=1}$.
Work Step by Step
Consider the given system of equations:
$\begin{align}
& x+2y-z=-3 \\
& 2x-4y+z=-7 \\
& -2x+2y-3z=4
\end{align}$
Therefore, in matrix form, the system of equations can be written as below:
$AX=b$
Where,
$A=\left[ \begin{array}{*{35}{r}}
1 & 2 & -1 \\
2 & -4 & 1 \\
-2 & 2 & -3 \\
\end{array} \right];b=\left[ \begin{array}{*{35}{r}}
-3 \\
-7 \\
4 \\
\end{array} \right];X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]$
Therefore, the solution of the system of equations is given by:
$X={{A}^{-1}}b$
Consider the determinant of the matrix
$\begin{align}
& \left| A \right|=\left| \begin{array}{*{35}{r}}
1 & 2 & -1 \\
2 & -4 & 1 \\
-2 & 2 & -3 \\
\end{array} \right| \\
& =\left( 12-2 \right)-2\left( -6+2 \right)-1\left( 4-8 \right) \\
& =10+8+4 \\
& =22
\end{align}$
Consider the adjoint of the matrix
$\text{adj}\left( A \right)={{\left[ \begin{array}{*{35}{r}}
+\left| \begin{array}{*{35}{r}}
-4 & 1 \\
2 & -3 \\
\end{array} \right| & -\left| \begin{array}{*{35}{r}}
2 & 1 \\
-2 & -3 \\
\end{array} \right| & +\left| \begin{array}{*{35}{r}}
2 & -4 \\
-2 & 2 \\
\end{array} \right| \\
-\left| \begin{array}{*{35}{r}}
2 & -1 \\
2 & -3 \\
\end{array} \right| & +\left| \begin{array}{*{35}{r}}
1 & -1 \\
-2 & -3 \\
\end{array} \right| & -\left| \begin{array}{*{35}{r}}
1 & 2 \\
-2 & 2 \\
\end{array} \right| \\
+\left| \begin{array}{*{35}{r}}
2 & -1 \\
-4 & 1 \\
\end{array} \right| & -\left| \begin{array}{*{35}{r}}
1 & -1 \\
2 & 1 \\
\end{array} \right| & +\left| \begin{array}{*{35}{r}}
1 & 2 \\
2 & -4 \\
\end{array} \right| \\
\end{array} \right]}^{t}}$
It can be further solved as below:
$\begin{align}
& \text{adj}\left( A \right)={{\left[ \begin{array}{*{35}{r}}
\left( 12-2 \right) & -\left( -6+2 \right) & \left( 4-8 \right) \\
-\left( -6+2 \right) & \left( -3-2 \right) & -\left( 2+4 \right) \\
\left( 2-4 \right) & -\left( 1+2 \right) & \left( -4-4 \right) \\
\end{array} \right]}^{t}} \\
& ={{\left[ \begin{array}{*{35}{r}}
10 & 4 & -4 \\
4 & -5 & -6 \\
-2 & -3 & -8 \\
\end{array} \right]}^{t}} \\
& =\left[ \begin{array}{*{35}{r}}
10 & 4 & -2 \\
4 & -5 & -3 \\
-4 & -6 & -8 \\
\end{array} \right]
\end{align}$
Therefore
$\begin{align}
& {{A}^{-1}}=\frac{1}{\left| A \right|}\text{adj}\left( A \right) \\
& =\frac{1}{22}\left[ \begin{array}{*{35}{r}}
10 & 4 & -2 \\
4 & -5 & -3 \\
-4 & -6 & -8 \\
\end{array} \right]
\end{align}$
Therefore the solution of the system of equations is
$\begin{align}
& X=\frac{1}{22}\left[ \begin{array}{*{35}{r}}
10 & 4 & -2 \\
4 & -5 & -3 \\
-4 & -6 & -8 \\
\end{array} \right]\left[ \begin{array}{*{35}{r}}
-3 \\
-7 \\
4 \\
\end{array} \right] \\
& =\frac{1}{22}\left[ \begin{array}{*{35}{r}}
-30-28-8 \\
-12+35-12 \\
12+42-32 \\
\end{array} \right] \\
& =\frac{1}{22}\left[ \begin{array}{*{35}{r}}
-66 \\
11 \\
22 \\
\end{array} \right] \\
& =\left[ \begin{array}{*{35}{r}}
-3 \\
0.5 \\
1 \\
\end{array} \right]
\end{align}$
The solutions of the system is $x=-3,y=0.5,z=1$.